Задания а6, а7 (1)… (2)вся другая информация (звуки, изображения) для обработки на компьютере должна быть преобразована в числовую форму. (3)аналогичным

ТЕМА 3. ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ

3.1. Язык как способ представления информации. Кодирование информации

Язык - множество символов и совокупность правил, определяющих способы составления из этих символов осмысленных сообщений. Семантика - система правил и соглашений, определяющая толкование и придание смысла конструкциям языка.
Кодирование информации - это процесс формирования определенного представления информации. При кодировании информация представляется в виде дискретных данных. Декодирование является обратным к кодированию процессом.
В более узком смысле под термином "кодирование" часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки. Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью программ для компьютера можно выполнить преобразования полученной информации.
Аналогичным образом на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов .
Знаки или символы любой природы, из которых конструируются информационные сообщения, называют кодами . Полный набор кодов составляет алфавит кодирования. Простейшим алфавитом, достаточным для записи информации о чем-либо, является алфавит из двух символов, описывающих два его альтернативных состояния ("да" - "нет", "+" - "-", 0 или 1).
Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми. Ввод чисел в компьютер и вывод их для чтения человеком может осуществляться в привычной десятичной форме, а все необходимые преобразования выполняют программы, работающие на компьютере.
Любое информационное сообщение можно представить, не меняя его содержания, символами того или иного алфавита или, говоря иначе, получить ту или иную форму представления . Например, музыкальная композиция может быть сыграна на инструменте (закодирована и передана с помощью звуков), записана с помощью нот на бумаге (кодами являются ноты) или намагничена на диске (коды - электромагнитные сигналы).
Способ кодирования зависит от цели, ради которой оно осуществляется. Это может быть сокращение записи, засекречивание (шифровка) информации, или, напротив, достижение взаимопонимания. Например, система дорожных знаков, флажковая азбука на флоте, специальные научные языки и символы - химические, математические, медицинские и др., предназначены для того, чтобы люди могли общаться и понимать друг друга. От того, как представлена информация, зависит способ ее обработки, хранения, передачи и т.д.
Компьютер с точки зрения пользователя работает с информацией самой различной формы представления: числовой, графической, звуковой, текстовой и пр. Но мы уже знаем (упоминалось выше), что он оперирует только цифровой (дискретной) информацией. Значит, должны существовать способы перевода информации из внешнего вида, удобного пользователю, во внутреннее представление, удобное компьютеру, и обратно.

3.2. Позиционные и непозиционные системы счисления

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные системы счисления. Знаки, используемые при записи чисел, называются цифрами.
В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы:

I V X L C D M
1 5 10 50 100 500 1000

В числе цифры записываются слева направо в порядке убывания. Величина числа определяется как сумма или разность цифр в числе. Если меньшая цифра стоит слева от большей цифры, то она вычитается, если справа - прибавляется. Например, VI = 5 + 1 = 6, а IX = 10 - 1 = 9, СССXXVII=100+100+100+10+10+5+1+1=327.
В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией .

Первая известная нам система, основанная на позиционном принципе - шестидесятеричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим - десятки. Следы вавилонской системы сохранились до наших дней в способах измерения и записи величин углов и промежутков времени.
Однако наибольшую ценность для нас имеет индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной системы счисления, так как в ней десять цифр.
Для того чтобы лучше понять различие позиционной и непозиционной систем счисления, рассмотрим пример сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Большая цифра соответствует большему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.
Далее мы будем рассматривать только позиционные системы счисления.
Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 555 7 - число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы - это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число x может быть представлено в системе с основанием p , как x=a n *p n +a n -1*p n-1 + a 1 *p 1 +a 0 *p 0 , где a n ...a 0 - цифры в представлении данного числа.
Так, например, 1035 10 =1*10 3 +0*10 2 +3*10 1 +5*10 0 ;
1010 2 = 1*2 3 +0*2 2 +1*2 1 +0*2 0 = 10.
Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы, как человека, так и вычислительной машины. Однако иногда в силу различных обстоятельств приходится обращаться к другим системам счисления, например, к троичной, семеричной или системе счисления по основанию 32.
Для того чтобы нормально оперировать с числами, записанными в таких нетрадиционных системах, важно понимать, что принципиально они ничем не отличаются от привычной нам десятичной системы счисления. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.
Почему же мы не пользуемся другими системами счисления? В основном потому, что в повседневной жизни мы привыкли пользоваться десятичной системой счисления, и нам не требуется никакая другая система счисления. В вычислительных же машинах используется двоичная система счисления, так как оперировать над числами, записанными в двоичном виде, довольно просто.
Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.
Методику представления информации в двоичной форме можно пояснить, проведя следующую игру. Нужно у собеседника получить интересующую нас информацию, задавая любые вопросы, но получая в ответ только одно из двух ДА либо НЕТ. Известным способом получения во время этого диалога двоичной формы информации является перечисление всех возможных событий. Рассмотрим простейший случай получения информации. Вы задаете только один вопрос: "Идет ли дождь?". При этом условимся, что с одинаковой вероятностью ожидаете ответ: "ДА" или "НЕТ". Легко увидеть, что любой из этих ответов несет самую малую порцию информации. Эта порция определяет единицу измерения информации, называемую битом. Благодаря введению понятия единицы информации появилась возможность определения размера любой информации числом битов. Образно говоря, если, например, объем грунта определяют в кубометрах, то объем информации - в битах. Условимся каждый положительный ответ представлять цифрой 1, а отрицательный - цифрой 0. Тогда запись всех ответов образует многозначную последовательность цифр, состоящую из нулей и единиц, например 0100.
Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам. Но, не всегда и не везде люди пользовались десятичной системой счисления. В Китае, например, долгое время применялась пятеричная система счисления. В ЭВМ используют двоичную систему потому, что она имеет ряд преимуществ перед другими:

  • для ее реализации используются технические элементы с двумя возможными состояниями (есть ток - нет тока, намагничен - ненамагничен);
  • представление информации посредством только двух состояний надежно и помехоустойчиво;
  • возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;
  • двоичная арифметика проще десятичной (двоичные таблицы сложения и умножения предельно просты).

В двоичной системе счисления всего две цифры, называемые двоичными (binary digits). Сокращение этого наименования привело к появлению термина бит, ставшего названием разряда двоичного числа. Веса разрядов в двоичной системе изменяются по степеням двойки. Поскольку вес каждого разряда умножается либо на 0, либо на 1, то в результате значение числа определяется как сумма соответствующих значений степеней двойки. Если какой-либо разряд двоичного числа равен 1, то он называется значащим разрядом. Запись числа в двоичном виде намного длиннее записи в десятичной системе счисления.
Арифметические действия, выполняемые в двоичной системе, подчиняются тем же правилам, что и в десятичной системе. Только в двоичной системе счисления перенос единиц в старший разряд возникает чаще, чем в десятичной. Вот как выглядит таблица сложения в двоичной системе:

Рассмотрим подробнее, как происходит процесс умножения двоичных чисел. Пусть надо умножить число 1101 на 101 (оба числа в двоичной системе счисления). Машина делает это следующим образом: она берет число 1101 и, если первый элемент второго множителя равен 1, то она заносит его в сумму. Затем сдвигает число 1101 влево на одну позицию, получая тем самым 11010, и если, второй элемент второго множителя равен единице, то тоже заносит его в сумму. Если элемент второго множителя равен нулю, то сумма не изменяется.
Двоичное деление основано на методе, знакомом вам по десятичному делению, т. е. сводится к выполнению операций умножения и вычитания. Выполнение основной процедуры - выбор числа, кратного делителю и предназначенного для уменьшения делимого, здесь проще, так как таким числом могут быть только либо 0, либо сам делитель.
Следует отметить, что большинство калькуляторов, реализованных на компьютере, позволяют осуществлять работу в системах счисления с основаниями 2, 8, 16 и, конечно, 10.
При наладке аппаратных средств компьютера или создании новой программы возникает необходимость "заглянуть внутрь" памяти машины, чтобы оценить ее текущее состояние. Но там все заполнено длинными последовательностями нулей и единиц двоичных чисел. Эти последовательности очень неудобны для восприятия человеком, привыкшим к более короткой записи десятичных чисел. Кроме того, естественные возможности человеческого мышления не позволяют оценить быстро и точно величину числа, представленного, например, комбинацией из 16 нулей и единиц.
Для облегчения восприятия двоичного числа решили разбивать его на группы разрядов, например, по три или четыре разряда. Эта идея оказалась очень удачной, так как последовательность из трех бит имеет 8 комбинаций, а последовательность из 4 бит - 16. Числа 8 и 16 являются степенями двойки, поэтому легко находить соответствие с двоичными числами. Развивая эту идею, пришли к выводу, что группы разрядов можно закодировать, сократив при этом длину последовательности знаков. Для кодировки трех битов требуется восемь цифр, поэтому взяли цифры от 0 до 7 десятичной системы. Для кодировки же четырех битов необходимо шестнадцать знаков; для этого взяли 10 цифр десятичной системы и 6 букв латинского алфавита: A, B, C, D, E, F. Полученные системы, имеющие основания 8 и 16, назвали соответственно восьмеричной и шестнадцатеричной.
В восьмеричной (octal) системе счисления используются восемь различных цифр 0, 1, 2, 3, 4, 5, 6, 7. Основание системы - 8. При записи отрицательных чисел перед последовательностью цифр ставят знак минус. Сложение, вычитание, умножение и деление чисел, представленных в восьмеричной системе, выполняются весьма просто подобно тому, как это делают в общеизвестной десятичной системе счисления. В различных языках программирования запись восьмеричных чисел начинается с 0, например, запись 011 означает число 9.
В шестнадцатеричной (hexadecimal) системе счисления применяется десять различных цифр и шесть первых букв латинского алфавита. При записи отрицательных чисел слева от последовательности цифр ставят знак минус. Для того чтобы при написании компьютерных программ отличить числа, записанные в шестнадцатеричной системе, от других, перед числом ставят 0x. То есть 0x11 и 11 - это разные числа. В других случаях можно указать основание системы счисления нижним индексом.
Шестнадцатеричная система счисления широко используется при задании различных оттенков цвета при кодировании графической информации (модель RGB). Так, в редакторе гипертекста Netscape Composer можно задавать цвета для фона или текста как в десятичной, так и шестнадцатеричной системах счисления.

3.3. Перевод чисел из одной системы счисления в другую

Представление чисел в развернутой форме одновременно является способом перевода чисел в десятичную систему из любой другой позиционной системы счисления. Достаточно подсчитать результат по правилам десятичной арифметики.
Например, надо получить десятичные эквиваленты чисел: 101,01 2 ; 673,2 8 ; 15AC 16 .

Перевод десятичного числа в другую систему счисления может выполняться разными способами. При этом надо учитывать, что алгоритмы перевода целых чисел и правильных дробей будут отличаться. Для смешанного числа целая и дробная части переводятся отдельно по соответствующим алгоритмам. В итоговой записи искомого они объединяются и разделяются запятой.
Так называемый метод поэтапного деления заключается в последовательном целочисленном делении исходного числа и получаемых неполных частных на основание той системы счисления, в которую осуществляется перевод. Остатки от деления составляют искомое число.
Алгоритм перевода целого десятичного числа N p :
1. Разделить нацело число N на p .
2. Полученный остаток от деления дает цифру, стоящую в нулевом разряде p -ичной записи числа N .
3. Полученное частное снова разделить нацело на p и снова запомнить полученный остаток - это цифра первого разряда, и т.д.
4. Такое последовательное деление продолжается до тех пор, пока частное не станет равным 0 .
5. Цифрами искомого числа являются остатки от деления, выписанные слева направо начиная с последнего полученного остатка.
Для оформления записи перевода предлагается один из возможных способов: слева от черты записываются неполные частные от целочисленного деления на основание, а справа - остатки от деления.
Например, надо перевести десятичное число 26 в двоичную, троичную и шестнадцатеричную системы счисления.

Результат: 26 10 =11010 2 , 26 10 =222 3 , 26=1A 16 .
Алгоритм перевода правильной десятичной дроби N в позиционную систему с основанием p :
1. Умножить данное число на новое основание p .
2. Целая часть полученного произведения является цифрой старшего разряда искомой дроби.
3. Дробная часть полученного произведения вновь умножается на p , и целая часть результата считается следующей цифрой искомой дроби.
4. Операции продолжать до тех пор, пока дробная часть не окажется равной нулю либо не будет достигнута требуемая точность.
Например, надо перевести десятичную дробь 0,375 в двоичную, троичную и шестнадцатеричную систему счисления. Перевод выполнить с точностью до третьего знака.

Результат: 0,375 10 =0,011 2 ; 0,375 10 =0,101 2 ; 0,375 10 =0,6 16 .
Наиболее часто встречающиеся системы счисления - это двоичная, шестнадцатеричная и десятичная. Как же связаны между собой представления числа в различных системах счисления? Рассмотрим различные способы перевода чисел из одной системы счисления в другую на конкретных примерах.
Пусть требуется перевести число 567 из десятичной системы счисления в двоичную систему. Сначала определим максимальную степень двойки, такую, чтобы два в этой степени было меньше или равно исходному числу. В нашем случае это 9, т. к. 2 9 =512, а 2 10 =1024, что больше начального числа. Таким образом, мы получим число разрядов результата. Оно равно 9+1=10. Поэтому результат будет иметь вид 1ххххххххх, где вместо х могут стоять любые двоичные цифры. Найдем вторую цифру результата. Возведем двойку в степень 9 и вычтем из исходного числа: 567-2 9 =55. Остаток сравним с числом 2 8 =256. Так как 55 меньше 256, то девятый разряд будет нулем, т.е. результат примет вид 10хххххххх. Рассмотрим восьмой разряд. Так как 2 7 =128>55, то и он будет нулевым.
Седьмой разряд также оказывается нулевым. Искомая двоичная запись числа принимает вид 1000хххххх. 2 5 =32 При другом способе перевода чисел используется операция деления в столбик. Рассмотрим то же самое число 567. Разделив его на 2, получим частное 283 и остаток 1. Проведем ту же самую операцию с числом 283. Получим частное 141, остаток 1. Опять делим полученное частное на 2, и так до тех пор, пока частное не станет меньше делителя. Теперь для того, чтобы получить число в двоичной системе счисления, достаточно записать последнее частное, то есть 1, и приписать к нему в обратном порядке все полученные в процессе деления остатки.

Результат, естественно, не изменился: 567 в двоичной системе счисления записывается как 1000110111.
Эти два способа применимы при переводе числа из десятичной системы в систему с любым основанием. Для закрепления навыков рассмотрим перевод числа 567 в систему счисления с основанием 16.
Сначала осуществим разложение данного числа по степеням основания. Искомое число будет состоять из трех цифр, т. к. 16 2 =256 Конечно, не надо забывать и о том, что для записи числа в шестнадцатеричной системе счисления, необходимо заменить 10 на A, 11 на B и так далее.

Операция перевода в десятичную систему выглядит гораздо проще, так как любое десятичное число можно представить в виде x = a 0 *p n + a 1 *p n-1 + ... + a n-1 *p 1 + a n *p 0 , где a 0 ... a n - это цифры данного числа в системе счисления с основанием p.
Например, переведем число 4A3F в десятичную систему. По определению, 4A3F= 4*16 3 +A*16 2 +3*16+F. Заменив A на 10, а F на 15, получим 4*16 3 +10*16 2 +3*16+15= 19007.
Пожалуй, проще всего осуществляется перевод чисел из двоичной системы в системы с основанием, равным степеням двойки (8 и 16), и наоборот. Для того чтобы целое двоичное число записать в системе счисления с основанием 2 n , нужно

  • данное двоичное число разбить справа налево на группы по n-цифр в каждой;
  • если в последней левой группе окажется меньше n разрядов, то дополнить ее нулями до нужного числа разрядов;
  • рассмотреть каждую группу, как n-разрядное двоичное число, и заменить ее соответствующей цифрой в системе счисления с основанием 2 n .

Двоично-шестнадцатеричная таблица

Например, надо перевести в восьмеричную и шестнадцатеричную системы счисления число 1011000010,0011001 2 .
Для этого разобьем исходное число на группы по 3 цифры, начиная от десятичной запятой, и заменим триады восьмеричными цифрами:

Разобьем число на группы по 4 цифры, начиная от десятичной запятой, и заменим тетрады шестнадцатеричными цифрами:

Результат: 1011000010,0011001 2 =1302,144 8 =2C2,32 16

3.4. Арифметические операции в позиционных системах счисления

Арифметические операции в рассматриваемых позиционных системах счисления выполняются по законам, известным из десятичной арифметики. Двоичная система счисления имеет основание 2, и для записи чисел используются всего две цифры 0 и 1 в отличие от десяти цифр десятичной системы счисления.
Рассмотрим сложение одноразрядных чисел: 0+0=0, 0+1=1, 1+0=0. Эти равенства справедливы как для двоичной системы, так и для десятичной системы. Чему же равно 1+1? В десятичной системе это 2. Но в двоичной системе нет цифры 2! Известно, что при десятичном сложении 9+1 происходит перенос 1 в старший разряд, так как старше 9 цифры нет. То есть 9+1=10. В двоичной системе старшей цифрой является 1. Следовательно, в двоичной системе 1+1=10, так как при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда значение числа в нем становится равным или большим основания. Для двоичной системы это число равно 2 (10 2 =2 10).

Продолжая добавлять единицы, заметим: 10 2 +1=11 2 , 11 2 +1=100 2 - произошла "цепная реакция", когда перенос единицы в один разряд вызывает перенос в следующий разряд.
Сложение многоразрядных чисел происходит по этим же правилам с учетом возможности переносов из младших разрядов в старшие.
Вычитание многоразрядных двоичных чисел производится с учетом возможных заёмов из старших разрядов.
Действия умножения и деления чисел в двоичной арифметике можно выполнять по общепринятым для позиционных систем правилам.

В основе правил арифметики любой позиционной системы лежат таблицы сложения и умножения одноразрядных чисел .


Для двоичной системы счисления:

Аналогичные таблицы составляются для любой позиционной системы счисления. Пользуясь такими таблицами, можно выполнять действия над многозначными числами.
Пример 4. Выполнить действия в пятеричной системе счисления: 342 5 +23 5 ; 213 5 . 5 5 .
Решение
Составим таблицы сложения и умножения для пятеричной системы счисления:

Выполним сложение.
Рассуждаем так: два плюс три равно 10 (по таблице); 0 пишем, 1 - в уме. Четыре плюс два равно 11 (по таблице), да еще один, 12. 2 пишем, 1 - в уме. Три да один равно 4 (по таблице). Результат - 420.


Выполним умножение.
Рассуждаем так: трижды три - 14 (по таблице); 4 пишем, один - в уме. Трижды один дает 3, да плюс один, - пишем 4. Дважды три (по таблице) - 11; 1 пишем, 1 переносим влево. Окончательный результат - 1144.
Если числа, участвующие в выражении, представлены в разных системах, нужно сначала привести их к одному основанию.

Пример 5. Сложить два числа: 17 8 и 17 16 .
Решение
Приведем число 17 16 к основанию 8 посредством двоичной системы (пробелами условно обозначено деление на тетрады и триады): 17 16 =10111 2 =10111 2 =27 8 .
Выполним сложение в восьмеричной системе:

Сделаем проверку, выполнив те же действия в десятичной системе:

Пример 6. Вычислить выражение, записав результат в двоичной системе счисления.
Решение
Приведем числа, участвующие в выражении, в единую систему счисления, например, десятичную:

Выполним указанные действия:
23-81/27=20 10 .
Запишем результат в двоичной системе счисления: 20 10 =10100 2 .
Таким образом, арифметические действия в позиционных системах счисления выполняются по общим правилам. Необходимо только помнить, что перенос в следующий разряд при сложении и заем из старшего разряда при вычитании определяются величиной основания системы счисления.

Вопросы для самоконтроля

  1. Что такое система счисления? Алгоритм перевода из десятичной в недесятичную систему счисления. Примеры.
  2. Что такое позиционная система счисления? Алгоритм перевода из недесятичной в десятичную систему счисления. Пример. Суммирование в недесятичной системе счисления. Примеры.
  3. Что такое непозиционная система счисления? Умножение и деление в недесятичной системе счисления. Примеры.
  4. Понятие позиционной системы счисления. Унарная, фибоначиева и другие системы счисления (вопрос необязательный)

ЗАДАНИЯ А6, А7 (1)… (2)Вся другая информация (звуки, изображения) для обработки на компьютере должна быть преобразована в числовую форму. (3)Аналогичным образом на компьютере обрабатывается и текстовая информация: при вводе в компьютер каждая буква кодируется определённым числом, а при переводе на внешние устройства по этим числам строятся соответствующие изображения букв. (4)Это соответствие между набором букв и числами называется кодировкой символов. (5)Все числа в компьютере представляются с помощью нулей и единиц, а не десяти цифр, как это привычно для людей. (6)… компьютеры обычно работают в двоичной системе счисления.


ЗАДАНИЯ А6, А7 А 6. Какое из приведённых ниже предложений должно быть первым в этом тексте? 1) Персональные компьютеры – это универсальные устройства для обработки информации. 2) Компьютер может обрабатывать только информацию, представленную в числовой форме. 3) Вся информация, предназначенная для долговременного пользования, хранится в файлах. 4) Информация в компьютере хранится в памяти или на различных носителях, например на гибких и жёстких дисках.


ЗАДАНИЯ А6, А7 (1)… (2)Однако не все эти фрагменты должны войти в реферат. (3)Их следует отобрать в соответствии с темой реферата и сгруппировать вокруг развивающих её нескольких больших подтем. (4)При этом важно точно и лаконично изложить содержание отобранных фрагментов, провести их смысловое свёртывание. (5)Под смысловым свёртыванием, или компрессией, понимается операция, приводящая к сокращению текста без потери важной, актуальной информации. (6)… компрессия, предусматривающая исключение из текста избыточной, второстепенной информации, является одним из ведущих приёмов при написании реферата.


ЗАДАНИЯ А6, А7 А 6. Какое из приведённых ниже предложений должно быть первым в этом тексте? 1) Фрагменты, содержащие второстепенную информацию, не должны перегружать текст реферата. 2) Выделение в текстах ключевых фрагментов является основой для написания реферата. 3) Часто при работе с текстом приходится удалять или заменять не отдельные предложения, а целые фрагменты текста. 4) Различные главы реферата несут различный объём информации.




ЗАДАНИЯ А6, А7 (1) … (2) К альтернативным методам исследования относится и компьютерная биология. (3) Это некий фронтир между биологией и информатикой, пограничная область, которая бурно развивается и разветвляется, используя возможности компьютеров и цифровой фото- и видеотехники. (4) Сюда относится математическое моделирование биологических процессов, работа с компьютерными базами данных. (5) Есть в Интернете разнообразные биологические коллекции – электронные версии традиционных зоомузеев, гербариев либо определители, где представлены «портреты» зафиксированных, засушенных и отпрепарированных растений и животных. (6) … подобный Интернет-ресурс может стать информационной базой новой науки о живом организме – физиомики.


ЗАДАНИЯ А6, А7 А 6. Какое из приведенных ниже предложений должно быть первым в этом тексте? 1) Виртуальный биологический музей, о котором пойдет речь, принципиально отличается от таких сетевых биологических коллекций. 2) Общее мнение выразила академик РАН и РАМН Наталья Бехтерева. 3) Сегодня в биологии предпочтительнее альтернативные методы исследования. 4) Идея его создания принадлежит кандидату биологических наук, старшему научному сотруднику Института теоретической и экспериментальной биофизики Российской Академии Наук (ИТЭБ РАН) Харлампию Тирасу.




ЗАДАНИЯ А6, А7 (1) … (2)Оно стало сегодня лишь внешним нарядом культуры. (3)Но на деле национальная культура носит в наше время ярко выраженный материальный характер: она представляет собой совокупность всех внешних достижений соответствующего народа, а также выступает в союзе с его экономическими и политическими стремлениями. (4)Культура стремится к экспансии вовне. (5) … современная национальная культура чувствует себя призванной овладеть другими народами и тем самым осчастливить их. (6) Нации ищут рынки сбыта для своей культуры так же, как для изделий своей промышленности или сельского хозяйства. (По А. Швейцеру.)








ЗАДАНИЯ А6, А7 A6 Какое из приведённых ниже предложений должно быть первым в этом тексте? 1) Духовное начало в национальной культуре, безусловно, все более и более укрепляется. 2) Стремление людей к обогащению не может стать национальной идеей. 3) Стремление к материальному благосостоянию – одна из коренных черт национальной культуры. 4) Духовное начало в национальной культуре отступило в нашу эпоху далеко на задний план.




ЗАДАНИЯ А6, А7 (1) … (2)Отрекаясь от собственного мнения, современники отказываются и от собственного нравственного выбора. (3)Они должны признать хорошим то, что общество словом и делом выдает за таковое, и осуждают то, что оно объявляет дурным. (4)При этом они пытаются подавлять рождающиеся в душе сомнения, не проявляя их ни перед другими, ни перед самими собой. (5) В конечном счете побеждает не личная совесть, а чувство принадлежности к коллективу. (6) … человек подчиняет свою нравственность требованиям масс. (По А. Швейцеру.)


ЗАДАНИЯ А6, А7 A6 Какое из приведённых ниже предложений должно быть первым в этом тексте? 1) Современный человек научился критически относиться к средствам массовой информации. 2) Люди нашей эпохи стремятся во всем противопоставить себя коллективу. 3) Современный человек свысока смотрит на научные достижения древних культур. 4) Современный человек испытывает жесточайшее давление общества, причем не только со стороны моды, но и в нравственном плане.



Решение заданий A6, A7, A8, A9, A10, A11 по русскому языку

Прочитайте текст и выполните задания A6 - A11.

(1)... (2)Вся другая информация (звуки, изображения) для обработки на компьютере должна быть преобразована в числовую форму. (3)Аналогичным образом на компьютере обрабатывается и текстовая информация: при вводе в компьютер каждая буква кодируется определённым числом, а при переводе на внешние устройства по этим числам строятся соответствующие изображения букв. (4)Это соответствие между набором букв и числами называется кодировкой символов. (5)Все числа в компьютере представляются с помощью нулей и единиц, а не десяти цифр, как это привычно для людей. (6)... компьютеры обычно работают в двоичной системе счисления.

A6

Какое из приведённых ниже предложений должно быть первым в этом тексте?

1) Персональные компьютеры – это универсальные устройства для обработки информации.
2) Компьютер может обрабатывать только информацию, представленную в числовой форме.
3) Вся информация, предназначенная для долговременного пользования, хранится в файлах.
4) Информация в компьютере хранится в памяти или на различных носителях, например на гибких и жёстких дисках.

Верный ответ – предложение №2. В предложении №2 (Вся другая информация (звуки, изображения) для обработки на компьютере должна быть преобразована в числовую форму ) имеется подсказка: словосочетание другая информация указывает на то, что в предыдущем предложении должна была идти речь о том, какая именно информация обрабатывается компьютером (информация, представленная в числовой форме ).

Решение задания A7 по русскому языку

A7

Какое из приведённых ниже слов (сочетаний слов) должно быть на месте пропуска в шестом предложении?

1) Прежде всего, 2) Однако 3) Кроме того, 4) Иными словами,

Верный ответ - №4 (Иными словами ), поскольку в последнем предложении подводится итог всего того, о чем говорится ранее. Вводная конструкция иными словами имеет значение обобщения, подытоживания ранее сказанного.

Решение задания A8 по русскому языку

A8

Какие слова являются грамматической основой во втором (2) предложении текста?

1) информация для обработки
2) информация должна
3) информация должна быть преобразована
4) информация преобразована

Грамматическая основа – это сочетание, образуемое главными членами, или единственный главный член предложения. В ней (грамматической основе), как правило, содержится вся суть предложения.
Во втором предложении подлежащее – информация , сказуемое – должна быть преобразована .
Таким образом, Верный ответ - №3.

Решение задания A9 по русскому языку

A9

Укажите верную характеристику третьего (3) предложения текста.

1) сложное с бессоюзной и союзной сочинительной связью
2) сложносочинённое
3) сложное бессоюзное
4) сложное с бессоюзной и союзной подчинительной связью

Для того чтобы определить тип предложения, необходимо, в первую очередь, найти грамматическую основу предложения. Составим схему предложения:

Аналогичным образом на компьютере обрабатывается и текстовая информация: при вводе в компьютер каждая буква кодируется определённым числом, а при переводе на внешние устройства по этим числам строятся соответствующие изображения букв.

1.[обрабатывается информация]: 2.[буква кодируется], а 3.[изображения букв строятся].

Мы выделили в предложении несколько (3) грамматических основ, следовательно, предложение сложное. Как видно из схемы, часть №1 и часть №2 соединены бессоюзной связью (на письме – двоеточие), а часть №2 и часть №3 с помощью сочинительного союза а . Таким образом, данное предложение характеризуется как сложное с бессоюзной и союзной сочинительной связью.
Верный ответ - №1

Решение задания A10 по русскому языку

A10

Укажите правильную морфологическую характеристику слова ПРЕОБРАЗОВАНА из второго (2) предложения текста.

1) действительное причастие
2) страдательное причастие
3) краткое прилагательное
4) деепричастие совершенного вида

Слово преобразована образовано от глагола преобразовать и отвечает на вопрос какова ? Таким образом, это отглагольное образование с общим атрибутивным (признак) значением. В русском языке значение признака по действию имеет только причастие. Действительный или страдательный залог причастий легко определяется по формальным показателям (по суффиксам): действительные причастия имеют в своем составе суффиксы –ущ-/-ющ-, -ащ-/-ящ-, -вш-, -в-, страдательные: -ем-, -им-, - н-/-нн-.
Таким образом, преобразована – страдательное причастие, Верный ответ - №2.

Решение задания A11 по русскому языку

A11

Укажите значение слова КОДИРУЕТСЯ в предложении 3.

1) воспроизводится в определённой последовательности
2) постоянно повторяется
3) записывается в виде текста
4) переводится из одной системы знаков в другую

В тексте речь идет о том, что компьютеры воспринимают только числовую информацию. Всю другую информацию, в том числе текстовую, компьютеры преобразовывают в числовую, т.е. переводят из одной системы знаков в другую.
Верный ответ - №4


Смотри также

Код - это набор условных обозначений (или сигналов) для записи (или передачи) некоторых заранее определенных понятий.

Кодирование информации – это процесс формирования определенного представления информации. В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Обычно каждый образ при кодировании (иногда говорят - шифровке) представлении отдельным знаком.

Знак - это элемент конечного множества отличных друг от друга элементов.

В более узком смысле под термином "кодирование" часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью программ для компьютера можно выполнить преобразования полученной информации, например "наложить" друг на друга звуки от разных источников.

Аналогичным образом на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми. Ввод чисел в компьютер и вывод их для чтения человеком может осуществляться в привычной десятичной форме, а все необходимые преобразования выполняют программы, работающие на компьютере.

Способы кодирования информации.

Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Двоичное кодирование – один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.

Кодирование символьной (текстовой) информации.

Основная операция, производимая над отдельными символами текста - сравнение символов.

При сравнении символов наиболее важными аспектами являются уникальность кода для каждого символа и длина этого кода, а сам выбор принципа кодирования практически не имеет значения.

Для кодирования текстов используются различные таблицы перекодировки. Важно, чтобы при кодировании и декодировании одного и того же текста использовалась одна и та же таблица.

Таблица перекодировки - таблица, содержащая упорядоченный некоторым образом перечень кодируемых символов, в соответствии с которой происходит преобразование символа в его двоичный код и обратно.

Наиболее популярные таблицы перекодировки: ДКОИ-8, ASCII, CP1251, Unicode.

Исторически сложилось, что в качестве длины кода для кодирования символов было выбрано 8 бит или 1 байт. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.

Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью одной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов.

Кодирование числовой информации.

Сходство в кодировании числовой и текстовой информации состоит в следующем: чтобы можно было сравнивать данные этого типа, у разных чисел (как и у разных символов) должен быть различный код. Основное отличие числовых данных от символьных заключается в том, что над числами кроме операции сравнения производятся разнообразные математические операции: сложение, умножение, извлечение корня, вычисление логарифма и пр. Правила выполнения этих операций в математике подробно разработаны для чисел, представленных в позиционной системе счисления.

Основной системой счисления для представления чисел в компьютере является двоичная позиционная система счисления.

Кодирование текстовой информации

В настоящее время, большая часть пользователей, при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Подсчитаем, сколько всего символов и какое количество бит нам нужно.

10 цифр, 12 знаков препинания, 15 знаков арифметических действий, буквы русского и латинского алфавита, ВСЕГО: 155 символов, что соответствует 8 бит информации.

Единицы измерения информации.

1 байт = 8 бит

1 Кбайт = 1024 байтам

1 Мбайт = 1024 Кбайтам

1 Гбайт = 1024 Мбайтам

1 Тбайт = 1024 Гбайтам

Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой

Основным отображением кодирования символов является код ASCII - American Standard Code for Information Interchange- американский стандартный код обмена информацией, который представляет из себя таблицу 16 на 16, где символы закодированы в шестнадцатеричной системе счисления.

Кодирование графической информации.

Важным этапом кодирования графического изображения является разбиение его на дискретные элементы (дискретизация).

Основными способами представления графики для ее хранения и обработки с помощью компьютера являются растровые и векторные изображения

Векторное изображение представляет собой графический объект, состоящий из элементарных геометрических фигур (чаще всего отрезков и дуг). Положение этих элементарных отрезков определяется координатами точек и величиной радиуса. Для каждой линии указывается двоичные коды типа линии (сплошная, пунктирная, штрихпунктирная), толщины и цвета.

Растровое изображение представляет собой совокупность точек (пикселей), полученных в результате дискретизации изображения в соответствии с матричным принципом.

Матричный принцип кодирования графических изображений заключается в том, что изображение разбивается на заданное количество строк и столбцов. Затем каждый элемент полученной сетки кодируется по выбранному правилу.

Pixel (picture element - элемент рисунка) - минимальная единица изображения, цвет и яркость которой можно задать независимо от остального изображения.

В соответствии с матричным принципом строятся изображения, выводимые на принтер, отображаемые на экране дисплея, получаемые с помощью сканера.

Качество изображения будет тем выше, чем "плотнее" расположены пиксели, то есть чем больше разрешающая способность устройства, и чем точнее закодирован цвет каждого из них.

Для черно-белого изображения код цвета каждого пикселя задается одним битом.

Если рисунок цветной, то для каждой точки задается двоичный код ее цвета.

Поскольку и цвета кодируются в двоичном коде, то если, например, вы хотите использовать 16-цветный рисунок, то для кодирования каждого пикселя вам потребуется 4 бита (16=24), а если есть возможность использовать 16 бит (2 байта) для кодирования цвета одного пикселя, то вы можете передать тогда 216 = 65536 различных цветов. Использование трех байтов (24 битов) для кодирования цвета одной точки позволяет отразить 16777216 (или около 17 миллионов) различных оттенков цвета - так называемый режим “истинного цвета” (True Color). Заметим, что это используемые в настоящее время, но далеко не предельные возможности современных компьютеров.

Кодирование звуковой информации.

Из курса физики вам известно, что звук - это колебания воздуха. По своей природе звук является непрерывным сигналом. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с течением времени напряжение.

Для компьютерной обработки аналоговый сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел, а для этого его необходимо дискретизировать и оцифровать.

Можно поступить следующим образом: измерять амплитуду сигнала через равные промежутки времени и записывать полученные числовые значения в память компьютера.