Самодельный стабилизатор напряжения 220в схема. Схема стабилизатора напряжения сети

Напряжение электросети у потребителей значительно отличается в связи с потерями в линии. Снижение напряжения может достигать значительных величин и вызвать сбой в работе приборов и устройств. Особенно страдают от нестандартного напряжения бытовые приборы оснащённые электродвигателями: холодильники, стиральные машины, пылесосы, водяные насосы и электроинструмент.

Повышенное напряжение электросети ведёт к интенсивному нагреву обмоток электродвигателя и износу коллектора, пробою изоляции. Пониженное напряжение оказывает не лучшее влияние: не запускаются электродвигатели или включаются рывками, что приводит к преждевременному износу пускорегулирующей аппаратуры.

Выход из создавшего положения довольно прост - установить вольтодобавочный трансформатор, суммарное напряжение вторичной обмотки и электросети станет близким к стандартному напряжению питания. Отрицательного влияния на электросеть такое устройство не оказывает. Наличие устройства поддержания напряжения электросети позволяет защитить электроприборы как от повышенного, так и от пониженного значения.

В данном устройстве силовой трансформатор небольшой мощности используется для увеличения напряжения при неизменной мощности потребления. В реальном устройстве достаточно несколько увеличить напряжение электросети вольтодобавкой, а затем стабилизировать. Разница входного и выходного напряжения используется на компенсацию при пониженном напряжении, повышенное напряжение сети снижается транзисторным регулятором.

Характеристики прибора:
Напряжение электросети 160-250 Вольт.
Вторичное напряжение 220 Вольт.
Мощность нагрузки до 2000 Ватт.
Ток нагрузки до 5 Ампер.
Вес 2кг.

Цена прибора в основном состоит из цены силового трансформатора типа ТС180-ТС320 от старых телевизоров и не превышает 500 рублей. Хорошо зарекомендовали трансформаторы типа ТН или ТПП с током вторичных обмоток в 6-8 Ампер при общем напряжении вторичных обмоток 24-36 Вольт. Схема устройства стабилизации напряжения состоит: из силового трансформатора T1, мощного диодного моста VD1 силовой цепи и ключевого транзистора VT1.

Цепи отслеживания напряжения ошибки состоят из диодного моста VD2 и усилителя ошибки на параллельном стабилизаторе DA1.

Повышение напряжения в сети приводит к увеличению напряжения во вторичной обмотке силового трансформатора 3Т1,напряжение на конденсаторе С3 увеличивается, что приводит к открыванию параллельного стабилизатора DA1 и шунтированию напряжения на резисторе R7.Напряжение на затворе полевого транзистора VT1 падает и приводит к его закрытию, что ограничивает вторичное напряжение на клеммах ХТ3, ХТ4.

Пониженное напряжение электросети приводит к обратному процессу - снижению напряжения на вторичных обмотках трансформатора, закрытию параллельного стабилизатора на м/с DA1 и открытию полевого транзистора VT1, что приводит к увеличению напряжения на вторичных обмотках.

Наладка схемы заключается в установке пределов стабилизации выходного напряжения. После включения (желательно на активную нагрузку в виде настольной лампы) резистором R5 выставляется выходное напряжение 225 вольт, подключив более мощную нагрузку в 1-1,5 квт (с соблюдение техники безопасности) - подкорректировать в пределах 220 Вольт.

Через 5-10 минут работы устройство и нагрузку отключить от электросети, проверить тепловые режимы всех радиодеталей, они не должны быть горячими, в ином случае увеличить радиатор ключевого транзистора.

Ввиду разброса усиления мощного полевого транзистора N-типа, начальное смещение можно подкорректировать подбором сопротивления резистора R4 -тока затвора. Транзистор закрепить на радиаторе 50*50*20мм через слюдяную прокладку.

Печатный монтаж схемы и трансформатор установлены в подходящем корпусе размеры которого зависят от габаритов трансформатора Т1. Индикатор работы устройства HL1 и выключатель сети SA1 с предохранителями FU1, FU2 - расположены сверху и сбоку корпуса.

При использовании металлического корпуса применить сетевую вилку с заземляющим ножом, вывод которого подключить к корпусу.

Радиодетали устройства в основном заводского исполнения, трансформатор используется без переделки: вторичная обмотка 2Т1 состоит из двух параллельных обмоток на 36 вольт, третья обмотка 3Т1 напряжением 6,3 вольта. Резисторы типа МЛТ или С29 .Подстроечные типа СП или СПО.

Силовые провода, обозначенные на схеме более толстыми линиями выполнить многожильным проводом сечением не менее 4мм., остальные соединения 0,5 мм.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 ИС источника опорного напряжения

TL431

1 В блокнот
VT1 MOSFET-транзистор

IRF840

1 В блокнот
VD1 Диодный мост

RS805

1 В блокнот
VD2 Выпрямительный диод

RL102

4 В блокнот
VD3 Стабилитрон КС156Б 1 В блокнот
С1 Конденсатор 0.1 мкФ 400 В 1 В блокнот
С2 10 мкФ 450 В 1 В блокнот
С3 Электролитический конденсатор 47 мкФ 25 В 1 В блокнот
С3 Конденсатор 1000 пФ 1 В блокнот
С4 Конденсатор 0.22 мкФ 1 В блокнот
R1 Резистор

56 кОм

1 2 Вт В блокнот
R2 Резистор

2.2 кОм

1 В блокнот
R3 Резистор

1.5 кОм

1 В блокнот
R4 Резистор

82 кОм

1 1 Вт В блокнот
R5 Переменный резистор 22 кОм 1 В блокнот
R6 Резистор

1 кОм

1 В блокнот
R7 Резистор

Метка: стабилизатор напряжения 220в своими руками. Стабилизатор напряжения 220в для дома своими руками схема

Стабилизатор напряжения для дома | Заметки электрика

Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.

Тема сегодняшней статьи относится к таким неотъемлемым в настоящее время устройствам, как стабилизаторы напряжения для дома. Сейчас я Вам поясню почему неотъемлемые. Энергоснабжающая организация не уделяет должного внимания на качество поставляемой электроэнергии потребителям. Причиной этому может являться отсутствие законов и наложение санкций при несоответствующем качестве. К тому же не стоит забывать, что энергоснабжающая организация является монополистом по поставке электрической энергии.

Поставляемая электроэнергия является товаром. И если этот «товар» будет не надлежащего качества, то это может привести к выходу из строя электрооборудования. Поэтому каждый потребитель должен позаботиться о себе сам, применив стабилизаторы напряжения для дома, которые предназначены для поддержания стабильного напряжения питания нагрузок бытового и промышленного назначения.

Что же такое «качество» электрической энергии?

Для этого обратимся к следующим нормативным документам, где регламентируются параметры электрической сети от источника питания до потребителя.

В этих ГОСТах представлена расшифровка параметров и цифровые показатели качества электрической энергии, методы их измерения, причины и вероятности появления того или иного отклонения качества.

Кстати, скачать ПУЭ 7 издание Вы можете с моего сайта.

Теперь давайте рассмотрим основные показатели качества электрической энергии, согласно ГОСТ 13109-97.

Основные показатели электрической энергии

1. Отклонение напряжения

Существуют следующие нормы отклонений:

  • нормально-допустимые (±5%)
  • предельно-допустимые (±10%)

Согласно ГОСТа 21128-83, номинальное действующее напряжение однофазной бытовой сети должно составлять 220 (В). Отсюда следует, что предел напряжений от 209 - 231 (В) является нормально-допустимым отклонением, а предел напряжений от 198 - 242 (В) - предельно-допустимым отклонением.

2. Провал напряжения

Провал напряжения - это падение напряжения ниже, чем 198 (В) длительностью более 30 секунд. Глубина провала напряжения может достигать до 100%.

3. Перенапряжение

Перенапряжение - это превышение амплитудного значения напряжения больше 339 (В).

Напоминаю, что амплитудное значение 310 (В) соответствует действующему значению 220 (В).

Более подробно о причинах возникновения перенапряжений читайте в моей статье: виды перенапряжений и их опасность.

Так что же такое стабилизатор напряжения для дома?

Стабилизатор напряжения - это автоматическое устройство, которое при изменении входного напряжения, на выход выдает стабильное заданное напряжение 220 (В). Схематично можно изобразить так:

Рассмотрим проблемы, которые могут возникнуть с питающим напряжением в своих домах, коттеджах и садах.

Наружная электропроводка для большинства дачных поселков была построена и рассчитана еще в прошлом веке, когда нормы потребления на каждый дом принимались около 2 (кВт). В настоящее время только один электрический чайник потребляет около 1 (кВт), стиральная машинка около 2 (кВт), не говоря уже об электрических плитах, мощность которых достигает 10 (кВт) и больше.

По причине долгого срока эксплуатации состояние питающих линий с каждым годом ухудшается. Обслуживающие электрики приезжают на линию только по аварийным заявкам и вызовам. Периодические проверки и обслуживание линий ведется по минимуму.

От воздействий атмосферных осадков происходит окисление проводов, что уменьшает их сечение, в местах соединений проводов ухудшается электрический контакт, что приводит к дополнительным потерям. Также увеличивается число потребителей на одну и ту же линию. Хотя в последнее время в технических условиях на подключение дома энергоснабжающая организация обязывает установку ограничителей мощности.

Что в итоге мы имеем?

Когда линия не нагружена, то величина питающего напряжения не выходит за рамки норм. Как только нагрузка на линии начинает постепенно расти (люди приходят с работы), питающее напряжение начинает уменьшаться. По личному примеру скажу, что в одной из деревень величина напряжения в вечернее время достигала 150 (В). При таком напряжении холодильники выходят из строя, лампочки светят тускло, электрические печи не греют до номинальной температуры и т.д.

Как выходит из данной ситуации энергоснабжающая организация?

Очень просто.

Они выставляют на питающем трансформаторе с помощью привода ПБВ или РПН изначально повышенный уровень напряжения, чтобы в часы максимальной нагрузки напряжение было в норме, ну или почти в норме. Но ведь изначально выставленный повышенный уровень напряжения на питающем трансформаторе приводит к скорому перегоранию лампочек, а также к выходу из строя бытовой аппаратуры и техники.

Что же получается? Палка о «двух концах»?

Кто в данном тексте увидел свою проблему, то рекомендую Вам позаботиться о себе самостоятельно, вооружившись стабилизатором напряжения для дома. Ниже я познакомлю Вас с типами стабилизаторов.

Типы стабилизаторов напряжения для дома

Рассмотрим классификацию стабилизаторов напряжения для дома.

1. Феррорезонансные или магниторезонансные стабилизаторы напряжения

Это самые «древние» стабилизаторы напряжения для дома, которые применялись для питания первых цветных телевизоров. Помните, такую «коробку»?

Стабилизатор напряжения для дома «Украина-2″ мощностью всего то 315 (Вт).

А это еще один феррорезонансный стабилизатор напряжения.

Принцип их работы основывается на явлении магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей.

У этих стабилизаторов напряжения недостатков пожалуй гораздо больше, чем достоинств. Во-первых, они выпускались небольшой мощности (до 600 Вт). Во-вторых, они очень сильно искажают синусоидальную форму выходного напряжения. В-третьих, они очень сильно гудят, а также у них узкий диапазон стабилизации и они частенько выходят из строя при повышенном напряжении в сети.

2. Дискретные (ступенчатые) стабилизаторы напряжения

Следующий тип стабилизаторов напряжения для дома, который мы рассмотрим, называются дискретными или ступенчатыми.

Принцип их работы основывается на ступенчатой коррекции напряжения, осуществляемой переключением отводов обмотки автотрансформатора с помощью ключей.

Ключи бывают либо релейными, либо полупроводниковыми (симисторы).

Ниже на рисунке приведена упрощенная схема дискретного стабилизатора для дома с прямым включением 5 ключей. Обычно такая схема применяется у самых дешевых моделей. Каждый ключ (реле или симистор) настроен на определенный порог срабатывания по уровню входного напряжения сети. При достижении этого значения ключ замыкает часть обмотки автотрансформатора.

Про достоинства таких типов стабилизаторов напряжения для дома могу сказать то, что они обладают высокой скоростью реакции на изменение входного напряжения, что необходимо для двигательных нагрузок, таких как холодильник, стиральная машина, глубинный насос и др.

Время реакции на изменение входного напряжения зависит от количества обмоток и скорости работы ключей.

Также у них небольшой вес и габариты, отсутствуют движущиеся части, в отличие от электромеханических стабилизаторов, а также широкий диапазон входных напряжений.

Из недостатков можно отметить то, что напряжение на выходе меняется ступенчато и во время процесса регулирования происходит прерывание выходного напряжения.

Сейчас мы рассмотрим электромеханические стабилизаторы напряжения для дома. Их принцип работы основан на регулировании напряжения за счет перемещения щетки по обмотке автотрансформатора.

Непрерывность фазы выходного напряжения обеспечивается конструкцией токосъемника, т.е. щеткой. Ширина щетки приблизительно равна 2,2 диаметра провода обмотки автотрансформатора, чтобы при переходе с одного витка на другой электрический контакт не терялся.

Достоинства электромеханического стабилизатора напряжения:

  • плавное регулирование
  • отсутствие помех при работе
  • отсутствие искаженной формы напряжения
  • отсутствие электронных ключей, коммутирующих рабочий ток
  • высокая точность удержания выходного напряжения - 220 ± 3% (в отличие от дискретных - 220 ± 7%)

Недостатки электромеханического стабилизатора напряжения:

  • необходимо следить за износом щетки
  • искрение во время перемещения щетки по обмотке автотрансформатора
  • во время работы двигателя сервопривода слышно гудение

Выводы

Про необходимость установки стабилизаторов напряжения для дома я Вам пояснил. Далее решать только Вам. С типами стабилизаторов я Вас познакомил. Рекомендую Вам приобретать только дискретные или электромеханические стабилизаторы (сам лично склоняюсь к последним), про феррорезонансный вообще забудьте.

P.S. В следующей статье мы научимся выбирать стабилизатор напряжения по мощности. Покажу Вам пример расчета мощности стабилизатора для своей квартиры. А также поговорим о месте их установки и креплении. Чтобы не пропустить выход новых статей - пройдите процедуру подписки. Форма находится в конце каждой статьи и в правой колонке сайта.

zametkielectrika.ru

стабилизатор напряжения 220в своими руками - Меандр - занимательная электроника

Цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26, содержит 10-разрядный АЦП, трехразрядный светодиодный индикатор с динамической индикацией, линейный стабилизатор 7805, ну еще несколько токоограничительных резисторов. Конечно, большая часть рассыпухи используется для работы безтрансформаторного БП. Ниже приведена схема вольтметра. Детали: все диоды в схеме использованы типа 1N4007, но подойдут и любые другие с прямым током от 0,5А …

В статье приведено описание устройства, которое позволяет наглядно с помощью двух светодиодных линеек отображать текущее значение напряжения сети ~220 В и тока потребления в контролируемой линии, а также осуществлять звуковую сигнализацию при выходе уровней напряжения и тока за установленные границы. Идея контролировать состояние домашней питающей сети возникает, думаю, у многих, особенно после очередной оплаты за …

R1, R2, R3 - делители напряжения в диапазонах 0-1,2В, 0-12В и 0-120В. Вольтметр индикатор собран на микросхеме LM3914. Ток протекающий через каждый светодиод может достигать 30мА. R4 - регулирует яркость светодиодов. Каждый светодиод имеет шаг 1,2В (в диапазоне 12В). Изменив значения делителей напряжения R1 R2 R3 Вы можете самостоятельно подобрать необходимый Вам диапазон измерения напряжения.

Технические характеристики: Напряжение питания – 10-17 В Шаг индикации напряжения – 0.5 В Диапазон измерения напряжения – 10.5-16 В Количество точек индикации – 12 Максимальный ток потребления – 40 мА Устройство представляет собой универсальный линейный индикатор напряжения на базе КР1003ПП1. Сигнал индицируется шкалой из 12 светодиодов, загорающихся последовательно в зависимости от входного напряжения. При использовании …

meandr.org

Подключение стабилизатора напряжения пошаговая инструкция

В зависимости от того, какой стабилизатор напряжения вы выбрали, стоит рассмотреть несколько вариантов подключения. (Меню кликабельно)

Кроме того, важно определиться с местом расположения стабилизатора

Зачастую бывает так, что в квартире (доме, офисе) есть необходимость подключить только одно-два устройства под стабилизатор, а остальные в таком не нуждаются.

Это случается тогда, когда входящее напряжение в сети незначительно отличается от номинальных 220 вольт и его перепады незначительны (+/- 15 вольт).

В таких случаях, действительно нет необходимости подключать полностью весь дом и достаточно защитить плазменный телевизор, спутниковый тюнер или компьютер.

Для подключения по такой схеме необходимо, тем не менее, позаботиться о том, чтобы высокоточная техника (аудио, видеосистемы, ПК) были дополнительно подключены через сетевой фильтр. Это необходимо для того, чтобы эти источники не давали помехи друг на друга, а также, чтобы отфильтровать скачки напряжения от работы сварки во дворе, например.

Стоит отметить, что в случае подключения газового котла, необходимо также включить в схему ИБП – источник бесперебойного питания, который обеспечит корректную работу оборудования даже при отключении электричества.

Непосредственно к самому выпрямителю можно подключать мощные токоприемники, такие, как насос, холодильник, микроволновая печь, электродуховка, пылесос, пароварка, утюг. Эти потребители не требуют особой точности в стабилизации и мало зависят от перепадов напряжения.

Схема подключения всей квартиры через стабилизатор напряжения

Этот способ подключения стабилизатора напряжения наиболее приемлем для современных квартир и домов.

Выпрямитель в этом случае является самым первым прибором после электросчетчика и обеспечивает стабильным и ровным напряжением все токоприемники квартиры, дачи или дома.

При таком подключении наиболее правильным считается проведение отдельных линий под разные типы электроприборов. Каждая из линий должна оборудоваться своими пакетниками (освещение, насос, телевизор+аудиосистема, компьютер и т.д.)

Но очень редко на этапе строительства учитывается, какие электроустановки будут включаться в ту или иную розетку, поэтому возникают ситуации, когда с помощью удлинителя удобно подключить маломощную, но точную технику (телевизор, спутниковая антенна) в одну розетку с «грубой» (холодильник, стиральная машина, насос, утюг).

При этом «грубая» техника при включении будет создавать помехи, которую стабилизатор, расположенный на входе в дом, отфильтровать не в состоянии. Поэтому старайтесь избегать такого соседства и подключать такие электроприборы как можно дальше друг от друга.

Если же это невозможно, то перед «точной» техникой должен обязательно стоять сетевой фильтр.

Три фазы

Нередко в помещение заходит не одна, а три фазы. В этом случае нужно подключать один трехфазный стабилизатор напряжения или три однофазных.

Первый из них используется только в том случае, если будут применяться электроприборы, рассчитанные на 380 вольт, например мощные электродвигатели, но такие устройства в быту обычно не используются.

Подключение стабилизаторов к трем фазам

Если же в дом поступает три фазы (380 вольт), то лучше использовать схему из трех стабилизаторов, которая обеспечит качественным, ровным 220 В электричеством всю элетрику в доме.

Более того, даже в промышленных масштабах рекомендуется использовать схему из трех однофазных, т.к. в случае выхода из строя или попросту отключения одного из них, в сети остается 220 вольт, что невозможно при использовании трехфазного – тот попросту отключает электричество полностью.

Поэтому, если в сети преобладают потребители по 220 вольт, а не по 380 – следует использовать схему из трех стабилизаторов.

Схема подключения показана на рисунке.

Трехфазный вход имеет четыре провода – один из которых – ноль, является общим для всех трех стабилизаторов в системе, а каждая отдельная фаза пропускается через отдельный выпрямитель.

Современная жизнь сопряжена с постоянным использованием различной техники, а некоторые сферы просто немыслимы без нее. Естественно, каждый человек желает, чтобы срок службы таких приборов был максимален, некоторые с этой целью покупают только продукцию известных брендов для большей надежности. Однако не всегда высокая стоимость гарантирует сохранность в критических эксплуатационных условиях. К таковым относятся резкие перепады напряжения сети. Особенно это касается той категории бытовой техники, которая подразумевает постоянное сетевое подключение, например, холодильник.

Для того, чтобы обезопасить себя от неприятных последствий подобных скачков напряжения можно обзавестись специальным техническим устройством, стабилизирующим выходной ток. Для регулировки напряжения используется два метода:

1. Механический. Для этого способа используется линейный стабилизатор, состоящий из 2-х колен и реостата, соединяющего их. Напряжение поступает на первое колено и через реостат передается второму, которое раздает поток далее. Данный метод эффективен в условиях небольшой разницы входного и выходного тока, в других случаях КПД снижается.

2. Импульсный. В конструкцию стабилизатора входит выключатель, периодически разрывающий цепь на определенное время. Это дает возможность подавать ток порционно и накапливать его равномерно в конденсаторе. После полной зарядки конденсатора к приборам подается выровненный поток без скачков.

Основным недостатком данного способа является невозможность задать конкретную величину параметра. Поэтому, если вы решили собрать стабилизатор напряжения 220В своими руками, ориентироваться нужно на механический метод. Для создания простого линейного однофазного выравнивателя тока потребуются:

  • Трансформатор;
  • Конденсаторы;
  • Резисторы;
  • Диод;
  • Провода, которыми будут соединяться микросхемы.

Трансформатор представляет собой пару катушек, которые образуют индуктивную электромагнитную связь, т.е. попадая на первичную обмотку, ток ее заряжает, а возникающее электромагнитное поле заряжает другую катушку. Такая взаимосвязь напряжения (U), силы тока (I) и числа витков (N) на обеих обмотках выражается формулой:

I2/I1 = N2/N1 = U2/U1

Сами индуктивные катушки можно найти в каждом магазине электротехники. Количество витков на первой не должно быть ниже 2000. Замерив напряжение в сети, можно рассчитать необходимое количество витков на вторичной обмотке. Например, фактическое напряжение 198 В, тогда вторая катушка должна иметь х/2000 = 220/198 = 2223 витка. По такому же принципу определяется вырабатываемая сила тока. По этой схеме при резком увеличении мощности на входе, напряжение пропорционально увеличится и на выходе. Поэтому для регулировки подобных ситуаций необходим реостат, изменяющий сопротивление сети. Путь, по которому следует ток после трансформатора, отмечается на микросхеме-стабилизаторе.

Из трансформатора ток выводится на конденсаторы одинаковой емкости для накопления и выравнивания потока, их потребуется примерно 16 штук. Далее конденсаторы необходимо подсоединить к реостату. Его сопротивление при напряжении 220 В и силе тока 4,75 А (среднее значение диапазона 4,5-5 А) после трансформатора должно быть 46 Ом. Для максимально плавного выравнивания напряжения можно установить несколько реостатов, распределяя сопротивление на каждый поровну. После того, как цепь пройдет реостаты, она снова соединяется в единый поток и следует на диод, который подключается непосредственно к розетке.

Данные операции применимы к проводу с фазой, ноль напрямую пропускается к розетке. Подобные стабилизаторы лучше всего подходят к постоянным условиям напряжения и собираются, руководствуясь параметрами конкретного прибора, что значительно повышает эффективность устройства.

Оптимальным способом работы электрических сетей считается изменение функций тока, а также требуемого напряжения на 10% от 220В. Однако так как скачки изменяются достаточно часто, соответственно электрическим устройствам, которые напрямую подсоединены к сети, угрожает поломка.

Чтобы исключить такие неприятности, необходимо установить определённое оборудование. А так как магазинное устройство имеет достаточно высокую стоимость, естественно многие собирают стабилизатор собственноручно.

Оправдано ли подобное решение и что требуется для воплощения его в реальность?

Принцип функционирования стабилизатора

Приняв решение создать самодельный стабилизатор, как на фото, нужно посмотреть во внутреннюю часть корпуса, которая состоит из определённых деталей. Принцип работы обычного прибора основан непосредственно на функционировании реостата, который увеличивает либо уменьшает сопротивление.


Кроме этого, предложенные модели имеют разнообразие функций, а также полностью могут обеспечить защиту технике от нежелательных перепадов скачущего напряжения в сети.

Оборудование классифицируется в зависимости от способов, применяемых для урегулирования тока. Так как величина является направленным продвижением частичек, соответственно влиять на неё можно механическим, либо импульсным методом.

Первый работает по закону Ома. Устройства, функционирование которых основано на нём, носят название линейные. В них включено несколько колен, совмещаемых посредством реостата.

Напряжение, которое подаётся на одну деталь, проходит посредством реостата, оказываясь подобным способом на другую, с которого передаётся потребителю.

Данного вида устройства дают возможность выставлять требуемые параметры тока максимально точно и вполне могут подвергнуться модернизации специальными узлами.

Однако недопустимо применять подобные стабилизаторы в сетях, где между током разница большая, поскольку они не обезопасят в полной мере от КЗ технику при перегрузках.

Варианты импульсные функционируют по методу амплитудной токовой модуляции. В цепи применяется выключатель, который её разрывает через необходимый период времени. Подобный подход даёт возможность накапливать необходимый ток в конденсаторе максимально равномерно, а по окончанию зарядки и затем на устройства.


Начинаем сборку

Так как к самому эффективному относится симисторный прибор, то поговорим, как собственными руками сделать непосредственно подобный стабилизатор.

Важно подчеркнуть, что данного типа модель сможет выравнивать подаваемый ток при таком условии, что напряжение в диапазоне 130-270 В. Потребуются также комплектующие элементы. Из инструментов нужен пинцет, а также паяльник.

Поэтапность изготовления

Согласно подробной инструкции, как смонтировать стабилизатор, прежде всего, следует подготовить требуемого размера плату печатную. Создаётся она из стеклотекстолита специального фольгированного. Микросхема расположения элементов может быть в напечатанном формате, либо перенесённой на плату посредством утюга.

Затем схемой создания простого стабилизатора предусмотрена непосредственно сборка прибора. Для данного элемента понадобится магнитопровод, несколько кабелей. Один провод диаметром в 0,064 мм применяется для изготовления обмотки. Количество требуемых витков достигает 8669.

Остальные два провода используют для создания оставшихся обмоток, характеризующиеся в сравнении с первым вариантом диаметром в 0,185 мм. Число обустраиваемых витков для данных обмоток равно не менее 522.

При необходимости упростить поставленную задачу предпочтительно воспользоваться последовательно соединяющимися трансформаторами марки ТПК-2-2 12В.

При самостоятельном производстве данных деталей по окончанию создания одной из них переходят к производству другой. В этих целях потребуется магнитопровод троидальный. В качестве обмотки подходит тоже ПЭВ-2 с числом витков 455.


К тому же пошаговым собственноручным изготовлением стабилизатора во втором приборе следует произвести 7 отводов. При этом для нескольких трёх применяется провод 3 мм в диаметре, для других используются шины 18 мм2 сечением. Это даст возможность исключить нежелательное нагревание устройства во время рабочего процесса.

Остальные элементы следует покупать в специализированной торговой точке. Как только всё нужное закуплено, следует собрать прибор.

Работы следует начинать с установки необходимой микросхемы, которая выступает в качестве контроллёра на обустраиваемый теплоотвод, производимый из платины. Помимо этого на него устанавливаются симисторы. Затем на плату монтируются светодиоды мигающие.

Если создание приборов симисторного для вас является сложной задачей, то рекомендуется остановиться на линейном варианте, характеризующемся подобными свойствами.

Фото стабилизаторов своими руками

Исследовав источники и ряд сайтов в Интернете, я упростил стабилизатор переменного напряжения, описанный в статье . Число микросхем удалось сократить до четырёх, число оптосимисторных ключей — до шести. Принцип действия стабилизатора такой же, как у прототипа .

Основные технические характеристики стабилизатора напряжения:

  • Входное напряжение, В …..135…270
  • Выходное напряжение, В. . . .197…242
  • Максимальная мощность нагрузки, кВт ………………5
  • Время переключения или отключения нагрузки,мс …….10

Схема предлагаемого стабилизатора показана на рисунке. Устройство состоит из силового модуля и блока управления. Силовой модуль содержит мощный автотрансформатор Т2 и шесть ключей переменного тока, обведённых на схеме штрихпунктирной линией.

Остальные детали образуют блок управления. Он содержит семь пороговых устройств: I - DA2.1 R5 R11 R17, II -DA2.2 R6 R12 R18, III — DA2.3 R7 R13 R19, IV — DA2.4 R8 R14 R20, V — DA3.1 R9 R15 R21, VI — DA3.2 R10 R16 R22, VII -DA3.3 R23. На одном из выходов дешифратора DD2 присутствует напряжение высокого уровня, которое вызывает включение соответствующего светодиода (одного из HL1 — HL8).

Мощный автотрансформатор Т2 включён иначе, чем в прототипе. Напряжение сети подаётся на один из отводов обмотки или на обмотку целиком через один из симисторов VS1—VS6, а нагрузка подключена к одному и тому же отводу. При таком включении расходуется меньше провода на обмотку автотрансформатора.

Напряжение обмотки II трансформатора Т1 выпрямляют диоды VD1, VD2 и сглаживает конденсатор С1. Выпрямленное напряжение пропорционально входному. Оно используется как для питания блока управления, так и для измерения входного напряжения сети. С этой целью оно подаётся на делитель R1—R3. С движка подстроечного резистора R2 поступает на неинвертирующие входы операционных усилителей DA2.1 —DA2.4, DA3.1—DA3.3. Эти ОУ используются в качестве компараторов напряжения. Резисторы R17—R23 создают гистерезис переключения компараторов.

В таблице ниже показаны пределы изменения выходного напряжения Uвых и логические уровни напряжения на выходах операционных усилителей и входах дешифратора DD2, а также включённые светодиоды в зависимости от входного напряжения Uвх без учёта гистерезиса.

Микросхема DA1 вырабатывает стабильное напряжение 12 В для питания остальных микросхем. Стабилитрон VD3 вырабатывает образцовое напряжение 9 В. Оно подаётся на инвертирующий вход ОУ DA3.3. На инвертирующие входы других ОУ оно поступает через делители на резисторах R5—R16.

При сетевом напряжении ниже 135 В напряжение на движке резистора R2, а значит, и на неинвертирующих входах ОУ меньше, чем на инвертирующих. Поэтому на выходах всех ОУ низкий уровень. На всех выходах микросхемы DD1 также низкий уровень. В этом случае появляется высокий уровень на выходе О (вывод 3) дешифратора DD2. Включён светодиод HL1, показывая слишком низкое напряжение сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

При напряжении сети от 135 до 155 В напряжение на движке резистора R2 больше, чем на инвертирующем входе DA2.1, поэтому на его выходе высокий уровень. На выходе элемента DD1.1 также высокий уровень. В этом случае появляется высокий уровень на выходе 1 (вывод 14) дешифратора DD2 (см. таблицу). Светодиод HL1 гаснет. Включается светодиод HL2, течёт ток через излучающий диод оптрона U6, вследствие чего оптосимистор этого оптрона открывается. Через открытый симистор VS6 напряжение сети подаётся на нижний по схеме отвод (вывод 6) относительно начала обмотки (вывода 7) автотрансформатора Т2. Напряжение на нагрузке больше напряжения сети на 64…71 В.

При дальнейшем повышении напряжения сети оно будет переключаться на следующий вверх по схеме вывод автотрансформатора Т2. В частности, напряжение сети от 205 до 235 В непосредственно поступает на нагрузку через открытый симистор VS2, а также на выводы 1—7 автотрансформатора Т2.

При напряжении сети от 235 до 270 В на выходах всех ОУ, кроме DA3.3, высокий уровень, ток течёт через светодиод HL7 и излучающий диод U1.2. Напряжение сети через открытый симистор VS1 подключено ко всей обмотке автотрансформатора Т2. Напряжение на нагрузке меньше напряжения сети на 24…28 В.

При напряжении сети более 270 В на выходах всех ОУ высокий уровень, а ток течёт через светодиод HL8, который сигнализирует о чрезмерно высоком напряжении сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

Маломощный трансформатор Т1 аналогичен применённому в прототипе, за исключением того, что его вторичная обмотка содержит 1400 витков с отводом от середины. Мощный автотрансформатор Т2 — готовый от промышленного стабилизатора VOTO 5000 Вт. Отмотав вторичную обмотку и часть первичной, я сделал новые отводы, считая от начала обмотки (вывода 7): вывод 6 от 215-го витка (150 В), вывод 5 от 236-го витка (165 В), вывод4 от 257-го витка (180 В), вывод 3 от 286-го витка (200 В), вывод 2 от 314-го витка (220 В). Вся обмотка (выводы 1—7) имеет 350 витков (245 В).

Постоянные резисторы — С2-23 и ОМЛТ, подстроечный резистор R2 — С5-2ВБ. Конденсаторы С1 —СЗ— К50-35, К50-20. Диоды (VD1, VD2) можно заменить на — , КД243Б— КД243Ж.

Микросхему можно заменить отечественными аналогами КР1157ЕН12А, КР1157ЕН12Б.

Налаживание выполняют с помощью ЛАТРа. Вначале устанавливают пороги переключения. Для достижения более высокой точности установки резисторы R17—R23, создающие гистерезис, не устанавливают. Мощный автотрансформатор Т2 не подключают. Устройство подключают к сети через ЛАТР. На выходе ЛАТРа устанавливают напряжение 270 В. Перемещают движок подстроечного резистора R2 снизу вверх по схеме до включения светодиода HL8. Далее на выходе ЛАТРа устанавливают напряжение 135 В. Подбирают резистор R5 так, чтобы напряжение на инвертирующем входе (вывод 2) ОУ DA2.1 было равно напряжению на его неинвертирующем входе (вывод 3). Затем последовательно подбирают резисторы R6…R10, устанавливая пороги переключения 155 В, 170 В, 185 В, 205 В, 235 В, сверяя логические уровни с таблицей. После этого устанавливают резисторы R17— R23. В случае необходимости подбирают их сопротивления, устанавливая необходимую ширину петли гистерезиса. Чем больше сопротивление, тем меньше ширина петли. Установив пороги переключения, подключают мощный автотрансформатор Т2, а к нему нагрузку, например, лампу накаливания мощностью 100…200 Вт. Проверяют пороги переключения и измеряют напряжение на нагрузке. После налаживания светодиоды HL2—HL7 можно удалить, заменив их перемычками.

ЛИТЕРАТУРА:

1. Годин А. Стабилизатор переменного напряжения. - Радио, 2005, № 8.
2. Озолин М. Усовершенствованный блок управления стабилизатора переменного напряжения. - Радио, 2006, № 7.