Касательное напряжение в точке. Основы сопромата

Напряжения характеризуются числовым значением и направлением, т. е. напряжение представляет собой вектор, наклоненный под тем или иным углом к рассматриваемому сечению.

Пусть в точке М какого-либо сечения тела по некоторой малой площадке A действует сила F под некоторым углом к площадке (рис. 63, а). Поделив эту силу F на площадь А, найдем возникающее в точке М среднее напряжение (рис. 63, б):

Истинные напряжения в точке М определяются при переходе к пределу

Векторная величина р называется полным напряжением в точке.

Полное напряжение р можно разложить на составляющие: по нормали (перпендикуляру) к площадке А и по касательной к ней (рис, 63, в).

Составляющую напряжения по нормали называют нормальным напряжением в данной точке сечения и обозначают греческой буквой (сигма); составляющую по касательной называют касательным напряжением и обозначают греческой буквой (тау).

Нормальное напряжение, направленное от сечения, считают положительным, направленное к сечению - отрицательным.

Нормальные напряжения возникают, когда под действием внешних сил частицы, расположенные по обе стороны от сечения, стремятся удалиться одна от другой или сблизиться. Касательные напряжения возникают, когда частицы стремятся сдвинуться одна относительно другой в плоскости сечения.

Касательное напряжение можно разложить по координатным осям на две составляющие и (рис.1.6, в). Первый индекс при показывает, какая ось перпендикулярна сечению, второй - параллельно какой оси действует напряжение. Если в расчетах направление касательного напряжения не имеет значения, его обозначают без индексов.

Между полным напряжением и его составляющими существует зависимость

Напряжение, при котором происходит разрушение материала или возникают заметные пластические деформации, называют предельным.


Задача 4.1.1: Совокупность напряжений, возникающих на множестве площадок, проходящих через рассматриваемую точку, называют …

2) полным напряжением;

3) нормальным напряжением;

4) касательным напряжением.

Решение:

1) Ответ верный. Напряженное состояние в точке полностью определяется шестью компонентами тензора напряжений: σ x , σ y , σ z , τ xy , τ yz , τ zx . Зная эти компоненты, можно определить напряжения на любой площадке, проходящей через данную точку. Совокупность напряжений, действующих по множеству площадок (сечений), проходящих через данную точку, называется напряженным состоянием в точке.

2) Ответ неверный! Незнание определения полного напряжения в точке (сила, приходящаяся на единицу площади сечения).

3) Ответ неверный! Напомним, что проекция вектора полного напряжения на нормаль к сечению называется нормальным напряжением.

4) Ответ неверный! Допущена ошибка в определении термина «касательное напряжение».
Проекция вектора полного напряжения на ось, лежащую в плоскости сечения, называется касательным напряжением.

Задача 4.1.2: Площадки в исследуемой точке напряженного тела, на которых касательные напряжения равны нулю, называют …

1) ориентированными; 2) главными площадками;

Решение:

1) Ответ неверный! Термин не соответствует заданному условию. Под ориентированными понимаются площадки, которые проходят через точку по заранее заданному направлению.

2) Ответ верный.

При повороте элементарного объема 1 можно отыскать такую его пространственную ориентацию 2, при которой касательные напряжения на его гранях исчезнут и останутся только нормальные напряжения (некоторые из них могут быть равными нулю). Площадки (грани), на которых касательные напряжения равны нулю, называются главными площадками.

3) Ответ неверный! Термин не соответствует заданному условию. Октаэдрическими называют площадки равнонаклоненные к главным. Касательные напряжения на октаэдрических площадках не равны нулю.

4) Ответ неверный! Напоминаем, что под секущими понимают площадки проведенные через точку, в которой исследуется напряженное состояние.

Задача 4.1.3: Главные напряжения для напряженного состояния, показанного на рисунке, равны… (Значения напряжений указаны в МПа ).

1)σ 1 =150 МПа, σ 2 =50 МПа; 2) σ 1 =0 МПа, σ 2 =50 МПа, σ 3 =150 МПа;

3) σ 1 =150 МПа, σ 2 =50 МПа, σ 3 =0 МПа;

4) σ 1 =100 МПа, σ 2 =100 МПа, σ 3 =0 МПа;

Решение:

1) Ответ неверный! Не указано значение главного напряжения σ 3 =0 МПа.

2) Ответ неверный! Обозначения главных напряжений не соответствуют правилу нумерации.

3) Ответ верный. Одна грань элемента свободна от касательных напряжений. Поэтому это главная площадка, а нормальное напряжение (главное напряжение) на этой площадке также равно нулю.
Для определения двух других значений главных напряжений воспользуемся формулой
,
где положительные направления напряжений показаны на рисунке.

Для приведенного примера имеем , , . После преобразований найдем
В соответствии с правилом нумерации главных напряжений имеем , , , т.е. плоское напряженное состояние.

4) Ответ неверный! Это не главные напряжения, а заданные значения нормальных напряжений, действующие на выделенный элемент.

Задача 4.1.4: В исследуемой точке напряженного тела на трех главных площадках определены значения нормальных напряжений: Главные напряжения в этом случае равны...

1)σ 1 =150 МПа, σ 2 =50 МПа, σ 3 =-100 МПа;

2) σ 1 =150 МПа, σ 2 =-100 МПа, σ 3 =50 МПа;

3) σ 1 =50 МПа, σ 2 =-100 МПа, σ 3 =150 МПа;

4) σ 1 =-100 МПа, σ 2 =50 МПа, σ 3 =150 МПа;

Решение:

1) Ответ верный. Главным напряжениям присваивают индексы 1, 2, 3 так, чтобы выполнялось условие . Следовательно,

2), 3), 4) Ответ неверный! Главным напряжениям присваивают индексы 1, 2, 3 так, чтобы выполнялось условие (в алгебраическом смысле).

Задача 4.1.5: На гранях элементарного объема (см. рисунок) определены значения напряжений в МПа . Угол между положительным направлением оси x и внешней нормалью к главной площадке, на которой действует минимальное главное напряжение, равен …

1) ; 2) ; 3) ; 4) .

Решение:

1), 2), 4) Ответ неверный! По всей видимости, неправильно записана формула для определения угла. Правильная запись:

3) Ответ верный.


Угол определяется по формуле
Подставляя числовые значения напряжений, получаем Поскольку угол отрицательный, откладываем угол по часовой стрелке.

Задача 4.1.6: Значения главных напряжений определяют из решения кубического уравнения Коэффициенты , , называют…

1) инвариантами напряженного состояния; 2) упругими постоянными;

4) коэффициентами пропорциональности.

Решение:

1) Ответ верный. Корни уравнения – главные напряжения − определяются характером напряженного состояния в точке и не зависят от выбора исходной системы координат. Следовательно, при повороте системы осей координат коэффициенты



должны оставаться неизменными. Они называются инвариантами напряженного состояния.

2) Ответ неверный! Ошибка в определении термина. Упругие постоянные характеризуют свойства материала.

3) Ответ неверный! Напомним, что направляющие косинусы – это косинусы углов, которые образует нормаль с осями координат.

4) Ответ неверный! Термин не соответствует условию вопроса


Через любую точку напряженного тела можно провести, как правило, _____________ взаимно перпендикулярные площадки (-ок), на которых касательные напряжения будут равны нулю.

три
две
четыре
шесть

Решение:

На рисунке показано тело, нагруженное внешними силами, и элементарный объем с напряжениями на его гранях. При мысленном повороте элементарного объема можно отыскать такую его пространственную ориентацию, при которой касательные напряжения на гранях будут равны нулю. Эти грани и будут главными площадками.

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения
Главными осями напряженного состояния называются …

Решение:

На рисунке показан элементарный объем, выделенный в окрестности произвольной точки нагруженного тела. Если при данной ориентации элементарного объема касательные напряжения на его гранях равны нулю, то оси x , y , z называются главными осями напряженного состояния. При переходе от одной точки к другой направления главных осей в общем случае изменяются.

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения
Нормальные напряжения, действующие на главных площадках, называются …

Решение:
Три взаимно перпендикулярные площадки, на которых отсутствуют касательные напряжения, называются главными площадками. Нормальные напряжения, действующие на главных площадках, называются главными напряжениями. Максимальное из трех главных напряжений является одновременно наибольшим полным напряжением, действующим по множеству площадок, проходящих через данную точку. Минимальное из трех главных напряжений является наименьшим из множества полных напряжений.

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения

Напряженное состояние элементарного объема, показанное на рисунке, − плоское. Верхняя грань элементарного объема является главной площадкой. Положение двух других главных площадок определяется углом

Решение:

На рисунке показан элементарный объем (вид сверху). Направление нормали к главной площадке определим по формуле где − угол между положительным направлением оси x и нормалью к одной из главных площадок. Для нашего случая Подставляя эти значения в формулу, получаем откуда а

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения

На рисунке показан стержень, растянутый силами F , и элементарный объем выделенный гранями, параллельными плоскостям стержня. При повороте элементарного объема вокруг оси «u » на угол, равный 45 0 , напряженное состояние …

Решение:
На рисунке элементарный объем выделен главными площадками. Главные напряжения: Напряженное состояние – линейное. Вид напряженного состояния не зависит от пространственной ориентации элементарного объема и при любом угле поворота остается линейным.

4.2. Виды напряженного состояния

Задача 4.2.1: Стержень круглого сечения диаметром d испытывает деформации чистый изгиб и кручение. Напряженное состояние в точке В показано на рисунке…

1) ; 2) ; 3) ; 4) .

Решение:

1) Ответ неверный! Крутящий момент вызывает появление касательных напряжений в плоскости перпендикулярной оси стержня.

2) Ответ неверный! Направление касательного напряжения в точке В поперечного сечения должно соответствовать направлению крутящего момента в данном сечении.

3) Ответ верный. Секущими плоскостями, ориентированными вдоль и поперек оси стержня, выделим объемный элемент. В сечении стержня у заделки действуют изгибающий момент М и крутящий момент . От изгибающего момента М в точке В возникает нормальное растягивающее напряжение . Крутящий момент , действующий в плоскости, перпендикулярной оси стержня, вызывает касательное напряжение . Направление касательного напряжения должно быть согласовано с направлением крутящего момента. Поэтому напряженное состояние элемента на рисунке 4 соответствует напряженному состоянию в точке В .

4) Ответ неверный! От крутящего момента в точке В поперечного сечения возникает касательное напряжение . Направление касательного напряжения должно быть согласовано с направлением крутящего момента.

Задача 4.2.2: Стержень испытывает деформации растяжение и чистый изгиб. Напряженное состояние, которое возникает в опасной точке, называется…

1) плоским; 2) объемным; 3) линейным; 4) чистым сдвигом.

Решение:

1) Ответ неверный! При плоском напряженном состоянии одно значение главного напряжения равно нулю.

2) Ответ неверный! В опасной точке отлично от нуля только одно главное напряжение. При объемном напряженном состоянии отличны от нуля три главных напряжения.

3) Ответ верный. Опасные точки расположены бесконечно близко к верхней грани элемента. В них возникают только растягивающие нормальные напряжения от продольной силы и изгибающего момента. Эпюры распределения напряжений от каждого внутреннего силового фактора и результирующая эпюра показаны на рисунке.

Следовательно, в опасной точке будет линейное напряженное состояние.

4) Ответ неверный! При чистом сдвиге два главных напряжения равны, но противоположны по знаку, а третье равно нулю.

Задача 4.2.3: Напряженное состояние «чистый сдвиг» показано на рисунке…

1) ; 2) ; 3) ; 4) .

Решение:

1) Ответ неверный! На рисунке показано плоское напряженное состояние – двухосное растяжение.

2) Ответ неверный! Элемент находится в условиях плоского напряженного состояния – двухосного смешанного напряженного состояния.

3) Ответ верный.

Чистый сдвиг – напряженное состояние, когда на гранях выделенного элементарного объема действуют только касательные напряжения. Если элементарный объем повернуть на угол, равный , то касательные напряжения на его гранях (площадках) будут равны нулю, но появятся нормальные (главные) напряжения и . Таким образом, чистый сдвиг может быть реализован растяжением и сжатием в двух взаимно перпендикулярных направлениях напряжениями, равными по абсолютной величине.
Следовательно, напряженное состояние «чистый сдвиг» показано на рисунке 3.

4) Ответ неверный! Данный элемент испытывает линейное напряженное состояние.

Задача 4.2.4: Тип напряженного состояния, показанного на рисунке, называется…

1) линейным; 2) плоским; 3) объемным; 4) чистым сдвигом.

Решение:

1) Ответ верный. Тип напряженного состояния определяется в зависимости от значений главных напряжений. В примере одна грань свободна от касательных напряжений – это главная площадка. Нормальное напряжение, действующее на главной площадке, называют главным напряжением. В данном случае оно равно нулю. Используя формулу , найдем два других главных напряжения. После преобразований получим , . В соответствии с принятыми обозначениями имеем , . Два главных напряжения равны нулю. Следовательно, на рисунке показано линейное напряженное состояние.

2) Ответ неверный! При плоском напряженном состоянии одно главное напряжение равно нулю. В данном случае два главных напряжения равны нулю.

3) Ответ неверный! При объемном напряженном состоянии В данном случае два главных напряжения равны нулю. Поэтому данное напряженное состояние не является объемным.

4) Ответ неверный! При чистом сдвиге , . Расчеты показывают, что для данного случая это неверно.

Задача 4.2.5: Напряженное состояние при значениях , , называют…

1) объемным; 2) чистым сдвигом; 3) плоским; 4) линейным.

Решение:

1) Ответ неверный! При объемном напряженном состоянии отличны от нуля все три главных напряжения.

2) Ответ неверный! При чистом сдвиге одно значение главного напряжения равно нулю, а два других равны по величине, но противоположны по знаку.

3) Ответ верный. Тип напряженного состояния определяется значениями главных напряжений. В случае, когда все три главных напряжения отличны от нуля, имеем объемное напряженное состояние. Если одно главное напряжение равно нулю - плоское напряженное состояние, а когда два равны нулю – линейное. Следовательно, в данном примере будет плоское напряженное состояние.

4) Ответ неверный! При линейном напряженном состоянии только одно главное напряжение отлично от нуля.

Задача 4.2.6: На гранях элементарного объема (см. рисунок) действуют напряжения заданные в МПа . Напряженное состояние в точке …

1) линейное; 2) плоское (чистый сдвиг); 3) плоское; 4) объемное.

Решение:

1) Ответ неверный! Фронтальная грань элементарного объема свободна от касательных напряжений. Это означает, что данная грань является главной площадкой и одно из трех главных напряжений равно (-50МПа ). Два других главных напряжения определите по формуле

2) Ответ неверный! Напомним, что при чистом сдвиге одно из главных напряжений равно нулю. Два других равны по абсолютной величине и противоположны по знаку.

3) Ответ верный. Передняя грань элементарного объема свободна от касательных напряжений. Это означает, что она является главной площадкой и одно из трех главных напряжений равно (-50 МПа ). Два других главных напряжения определим по формуле

Поставляя числовые значения, получаем


Присваивая главным напряжениям индексы, имеем:

Таким образом, напряженное состояние плоское (двухосное сжатие).

4) Ответ неверный! Фронтальная грань элементарного объема свободна от касательных напряжений. Это означает, что данная грань является главной площадкой и одно из трех главных напряжений равно (-50 МПа ). Два других главных напряжения можно определить по формуле
Результаты расчетов покажут, какое напряженное состояние изображено на рисунке.



Напряженное состояние элементарного объема, показанное на рисунке, является – …

Решение:
Главные напряжения являются корнями кубического уравнения
где:



В нашем случае , и кубическое уравнение принимает вид откуда
Таким образом, напряженное состояние элементарного объема линейное (одноосное растяжение).

Тема: Виды напряженного состояния

Стальной кубик вставлен без зазора в жесткую обойму (см. рис.). На верхнюю грань кубика действует равномерно распределенное давление интенсивности р . Поверхности кубика и обоймы абсолютно гладкие. Напряженное состояние кубика показано на рисунке …

в
г
б
а

Решение:

Силы трения между абсолютно гладкими поверхностями кубика и обоймы отсутствуют. Поэтому касательные напряжения на гранях кубика равны нулю, и все грани являются главными площадками. В процессе сжатия ребра кубика, направленные вдоль осей x и y , стремятся удлиниться. Удлинение вдоль оси y происходит свободно. Удлинение вдоль оси x невозможно (мешает жесткая обойма). В связи с невозможностью удлинения вдоль оси x , со стороны вертикальных плоскостей обоймы на кубик действуют усилия в виде равномерно распределенных по площади нагрузок с некоторой интенсивностью . Интенсивности р и следует рассматривать как главные напряжения. Таким образом, из трех главных напряжений одно (по фронтальной грани кубика). Поэтому напряженное состояние кубика плоское (рис. в ).

Тема: Виды напряженного состояния

На рисунке показан стержень, работающий на кручение с растяжением. Напряженное состояние в точке К является – …

Решение:

В точке К поперечного сечения действует нормальное напряжение от силы F . Эпюра касательных напряжений от крутящего момента показана на рисунке 1. В угловых точках Поэтому напряженное состояние в точке К − линейное (одноосное растяжение, рис. 2).

Тема: Виды напряженного состояния

Напряженное состояние элементарного объема является – …

Решение:

Верхняя грань элементарного объема является главной площадкой, поэтому одно главное напряжение равно Два других главных напряжения вычисляем по формуле
В данном случае (см. рис.) Подставляя в формулу, получаем
Присваивая главным напряжениям соответствующие индексы, получаем
Напряженное состояние − объемное.

Тема: Виды напряженного состояния

На тело действует равномерно распределенное по поверхности давление р (см. рис.). Напряженное состояние элементарного объема является – …

Решение:

Если на тело действует равномерно распределенное по поверхности давление р (см. рис.), то напряженное состояние в любой точке тела объемное (трехосное сжатие). При этом при любой пространственной ориентации элементарного объема.

Напряженное и деформированное состояния упругого тела. Связь между напряжениями и деформациями

Понятие о напряжении тела в данной точке. Нормальные и касательные напряжения

Внутренние силовые факторы, возникающие при нагружении упругого тела, характеризуют состояние того или иного сечения тела, но не дают ответа на вопрос о том, какая именно точка поперечного сечения является наиболее нагруженной, или, как говорят, опасной точкой . Поэтому необходимо ввести в рассмотрение какую-то дополнительную величину, характеризующую состояние тела в данной точке.

Если тело, к которому приложены внешние силы, находится в равновесии, то в любом его сечении возникают внутренние силы сопротивления. Обозначим через внутреннее усилие, действующее на элементарную площадку , а нормаль к этой площадке через тогда величина

(3.1)

называется полным напряжением.

В общем случае полное напряжение не совпадает по направлению с нормалью к элементарной площадке, поэтому удобнее оперировать его составляющими вдоль координатных осей -

Если внешняя нормаль совпадает с какой-либо координатной осью, например, с осью Х , то составляющие напряжения примут вид при этом составляющая оказывается перпендикулярной сечению и называется нормальным напряжением , а составляющие будут лежать в плоскости сечения и называются касательными напряжениями .

Чтобы легко различать нормальные и касательные напряжения обычно применяют другие обозначения: - нормальное напряжение, - касательное.

Выделим из тела, находящегося под действием внешних сил, бесконечно малый параллелепипед, грани которого параллельны координатным плоскостям, а ребра имеют длину . На каждой грани такого элементарного параллелепипеда действуют по три составляющие напряжения, параллельные координатным осям. Всего на шести гранях получим 18 составляющих напряжений.

Нормальные напряжения обозначаются в виде , где индекс обозначает нормаль к соответствующей грани (т.е. может принимать значения ). Касательные напряжения имеют вид ; здесь первый индекс соответствует нормали к той площадке, на которой действует данное касательное напряжение, а второй указывает ось, параллельно которой это напряжение направлено (рис.3.1).

Рис.3.1. Нормальные и касательные напряжения

Для этих напряжений принято следующее правило знаков . Нормальное напряжение считается положительным при растяжении, или, что то же самое, когда оно совпадает с направлением внешней нормали к площадке, на которой действует. Касательное напряжение считается положительным, если на площадке, нормаль к которой совпадает с направлением параллельной ей координатной оси, оно направлено в сторону соответствующей этому напряжению положительной координатной оси.

Составляющие напряжений являются функциями трех координат. Например, нормальное напряжение в точке с координатами можно обозначать

В точке, которая отстоит от рассматриваемой на бесконечно малом расстоянии, напряжение с точностью до бесконечно малых первого порядка можно разложить в ряд Тейлора:

Для площадок, которые параллельны плоскости изменяется только координата х , а приращения Поэтому на грани параллелепипеда, совпадающей с плоскостью нормальное напряжение будет , а на параллельной грани, отстоящей на бесконечно малом расстоянии , - Напряжения на остальных параллельных гранях параллелепипеда связаны аналогичным образом. Следовательно, из 18 составляющих напряжения неизвестными являются только девять.

В теории упругости доказывается закон парности касательных напряжений , согласно которому по двум взаимно перпендикулярным площадкам составляющие касательных напряжений, перпендикулярные линии пересечения этих площадок, равны друг другу:

Можно показать, что напряжения (3.3) не просто характеризуют напряженное состояние тела в данной точке, но определяют его однозначно. Совокупность этих напряжений образует симметричную матрицу, которая называется тензором напряжений :

(3.4)

Так как в каждой точке будет свой тензор напряжений, то в теле имеется поле тензоров напряжений.

При умножении тензора на скалярную величину получится новый тензор, все компоненты которого в раз больше компонентов исходного тензора.

Напряжение есть вектор и как всякий вектор может быть представлен нормальной (по отношению к площадке) и касательной составляющими (рис. 2.3). Нормальную составляющую вектора напряжений будем обозначать касательную . Экспериментальными исследованиями установлено, что влияние нормальных и касательных напряжений на прочность материала различно, и потому в дальнейшем окажется необходимым всегда раздельно рассматривать составляющие вектора напряжений.

Рис. 2.3. Нормальное и касательное напряжения в площадке

Рис. 2.4. Касательное напряжение при срезе болта

При растяжении болта (см. рис. 2.2) в поперечном сечении действует нормальное напряжение

При работе болта на срез (рис. 2.4) в сеченйи П должно возникать усилие, уравновешивающее усилие .

Из условий равновесия следует, что

В действительности последнее соотношение определяет некоторое среднее напряжение по сечению, которым иногда пользуются для приближенных оценок прочности. На рис. 2.4 показан вид болта после воздействия значительных усилий. Началось разрушение болта, и одна его половина сместилась относительно другой: произошла деформация сдвига или среза.

Примеры определения напряжений в элементах конструкций.

Разберем простейшие примеры, в которых предположение о равномерном распределении напряжений, можно считать практически приемлемым. В таких случаях величины напряжений определяются с помощью метода сечений из уравнений статики (уравнений равновесия).

Кручение тонкостенного круглого вала.

Тонкостенный круглый вал (труба) передает крутящий момент (например, от авиационного двигателя на воздушный винт). Требуется определить напряжения в поперечном сечении вала (рис. 2.5, а). Проведем плоскость сечения П перпендикулярно оси вала и рассмотрим равновесие отсеченной части (рис. 2.5, б).

Рис. 2.5. Кручение тонкостенного круглого вала

Из условия осевой симметрии, учитывая малую толщину стенки можно принять, что напряжения во всех точках поперечного сечения одинаковы.

Строго говоря, такое предположение справедливо только при очень малой толщине стенки, но в практических расчетах его используют, если толщина стенки

где - средний радиус сечения.

Внешние силы, приложенные к отсеченной части вала, сводятся только к крутящему моменту, и потому нормальные напряжения в поперечном сечении должны отсутствовать. Крутящий момент уравновешивается касательными напряжениями, момент которых равен

Из последнего соотношения находим касательное напряжение в сечении вала:

Напряжения в тонкостенном цилиндрическом сосуде (трубе).

В тонкостенном цилиндрическом сосуде действует давление (рис. 2.6, а).

Проведем сечение плоскостью П, перпендикулярной оси цилиндрической оболочки, и рассмотрим равновесие отсеченной части. Давление, действующее на крышку сосуда, создает усилив

Это усилие уравновешивается силами, возникающими в поперечном сечении оболочки, и интенсивность - указанных сил - напряжение - будет равна

Толщина оболочки 5 предполагается малой по сравнению со средним радиусом , напряжения считаются равномерно распределенными во всех точках поперечного сечения (рис. 2.6, б).

Однако на материал трубы действуют не только напряжения в продольном направлении, но и окружные (или кольцевые) напряжения в перпендикулярном направлении. Для их выявления выделим двумя сечениями кольцо длиной I (рис. 2.7), а затем проведем диаметральное сечение, отделяющее половину кольца.

На рис. 2.7, а показаны напряжения на поверхностях сечения. На внутреннюю поверхность трубы радиусом действует давление

Рис. 2.8. Трещина в цилиндрической оболочке при действии разрушающего внутреннего давления

Зная компоненты напряжений в любой точке пластинки в условиях плоского напряженного состояния или плоской деформации, можно найти из уравнений статики напряжения на любой наклонной по отношению к осям х и у плоскости (площадке), проходящей через эту точку перпендикулярно пластинке. Обозначим через Р некоторую точку в напряженной пластинке и допустим, что компоненты напряжения известны (рис. 12). На малом расстоянии от Р проведем плоскость параллельную оси так, чтобы эта плоскость вместе с координатными плоскостями вырезала из пластинки очень малую треугольную призму Поскольку напряжения изменяются по объему тела непрерывно, то при уменьшении размеров вырезанного элемента напряжение, действующее на площадке будет стремиться к напряжению на параллельной площадке, проходящей через точку Р.

При рассмотрении условий равновесия малой треугольной призмы объемными силами можно пренебречь как величинами высшего порядка малости. Подобным образом, если вырезанный элемент очень мал, можно пренебречь изменениями напряжений по граням и предположить, что напряжения распределены равномерно. Тогда силы, действующие на треугольную призму, можно определить путем умножения компонент напряжений на площади граней. Пусть - направление нормали к плоскости а косинусы углов между нормалью и осями х и у обозначаются следующим образом:

Тогда, если через А обозначить площадь грани элемента, то площади двух других граней будут .

Если обозначить через X и компоненты напряжений, действующих на грани то условия равновесия призматического элемента приводят к следующим соотношениям:

Таким образом, компоненты напряжений на любой площади, определяемой направляющими косинусами и можно легко найти из соотношений (12), если известны три компоненты напряжения в точке Р.

Обозначим через а угол между нормалью к площадке и осью х, так что тогда из соотношений (12) для нормальной и касательной компоненты напряжений на площадке получим формулы:

Очевидно, угол можно выбрать таким образом, чтобы касательное напряжение на площадке стало равным нулю. Для этого случая получаем

Из этого уравнения можно найти два взаимно перпендикулярных направления, для которых касательные напряжения на соответствующих площадках равны нулю. Эти направления называются главными, а соответствующие нормальные напряжения - главными нормальными напряжениями.

Если за главные направления принять направления осей х и у, то компонента равна нулю и формулы (13) принимают более простой вид

Изменение компонент напряжений а и в зависимости от угла а можно легко представить графически в виде диаграммы в координатах а и Каждой ориентации площадки соответствует точка на этой диаграмме, координаты которой представляют собой значения напряжений действующих на этой площадке. Такая диаграмма представлена на рис. 13. Для площадок, перпендикулярных к главным направлениям, мы получаем точки А и В с абсциссами соответственно. Теперь можно

доказать, что компоненты напряжения для любой площадки определяемой углом а (рис. 12), будут представляться координатами некоторой точки на окружности, для которой отрезок А В является диаметром. Чтобы найти эту точку, достаточно отмерить от точки А в том же направлении, в каком измеряется угол а на рис. 12, дугу, отвечающую углу . Для координат построенной таким образом точки D из рис. 13 получим

Сравнение с формулами (13) показывает, что координаты точки D дают численные значения компонент напряжения на площадке определяемой углом а. Чтобы привести в соответствие знак касательной компоненты, примем, что положительные значения откладываются вверх (рис. 13, а), и будем считать касательные напряжения положительными, когда они дают момент, действующий по направлению часовой стрелки, как это имеет место на гранях элемента (рис. 13, б). Касательные напряжения противоположного направления, например действующие на гранях элемента, считаются отрицательными.

Будем менять ориентацию площадки вращая ее вокруг оси, перпендикулярной плоскости (рис. 12) по направлению часовой стрелки так, что угол а будет изменяться от 0 до при этом точка D на рис. 13 будет перемещаться от А к В. Таким образом, нижняя половина круга определяет изменение напряжений для всех значений а в этих пределах. В свою очередь верхняя часть круга дает напряжения для интервала

Продолжая радиус до точки (рис. 13), т. е. беря угол равным вместо , получаем напряжения на площадке, перпендикулярной площадке (рис. 12). Отсюда видно, что касательные напряжения на двух взаимно перпендикулярных площадках численно друг другу равны, как это и было доказано ранее. Что касается нормальных напряжений, то мы видим из

рисунка, что т. е. сумма нормальных напряжений, действующих на двух взаимно перпендикулярных площадках, при изменении угла а остается постоянной.

Максимальное касательное напряжение ттах дается на диаграмме (рис. 13) максимальной ординатой окружности, т. е. равно радиусу окружности. Отсюда

Оно действует на площадке, для которой т. е. на площадке, нормаль к которой делит пополам угол между двумя главными направлениями.

Соответствующая диаграмма может быть построена и для случая, когда одно или оба главных напряжения отрицательны, т. е. для случая сжатия. Нужно только величину сжимающего напряжения откладывать в сторону отрицательных абсцисс. На рис. 14, а изображена диаграмма для случая, когда оба главных напряжения отрицательны, на рис. 14, б построена диаграмма для случая чистого сдвига.

Из рис. 13 и 14 видно, что напряжение в любой точке можно разложить на две части. Одна из них представляет собой двухосное растяжение (или сжатие), две компоненты которого равны между собой и по величине определяются абсциссой центра круга Мора.

Другая часть представляет собой чистый сдвиг с касательным напряжением, величина которого дается радиусом круга. При наложении нескольких плоских напряженных состояний равномерные растяжения (или сжатия) можно складывать друг с другом алгебраически. При наложении состояний чистого сдвига нужно учитывать направления плоскостей, на которые действуют соответствующие касательные напряжения. Можно показать, что при наложении друг на друга двух напряженных состояний чистого сдвига, для которых плоскости максимального касательного напряжения находятся под углом друг к другу, получающаяся в результате система сведется к другому случаю чистого сдвига. Например, рис. 15 показывает как определять напряжение, производимое двумя состояниями чистого сдвига с величинами касательных напряжений и на площадке, положение которой определяется углом Первое из этих состояний относится к плоскостям (рис. 15, а), а второе - к плоскостям, наклоненным к плоскостям