Из какого материала самые хорошие солнечные батареи. Когда солнечные батареи целесообразны

Солнечные батареи редко рассматриваются в качестве единственного источника электроэнергии, тем не менее, целесообразность в их установке есть. Так, в безоблачную погоду правильно рассчитанная автономная система сможет обеспечивать электроэнергией подключенные к ней электроприборы практически круглые сутки. Впрочем, грамотно скомплектованные солнечные панели, аккумуляторы и вспомогательные устройства даже в пасмурный зимний день позволят значительно снизить затраты на оплату электроэнергии по счетчику.

BOB691774 Пользователь FORUMHOUSE

Использую солнечные панели из элементов уже 2-й год. Был вынужден, так как в кооперативе, где мой гараж, очень надолго отключили свет. Собрал 2 шт. по 60 Ватт, контроллер купил и инвертер на 1500 Вт. Полная независимость просто окрыляет. И свет есть, и работа ручным инструментом доставляет удовольствие.

Правильная организация автономных систем электроснабжения на основе солнечных батарей – это целая наука, но, опираясь на опыт пользователей нашего портала, мы можем рассмотреть общие принципы их создания.

Что такое солнечная батарея

Солнечная батарея (СБ) представляет собой несколько фотоэлектрических модулей, объединенных в одно устройство с помощью электрических проводников.

И если батарея состоит из модулей (которые еще называют панелями), то каждый модуль сформирован из нескольких солнечных элементов (которые называют ячейками). Солнечная ячейка является ключевым элементом, который находится в основе батарей и целых гелиоустановок.

На фото представлены солнечные ячейки различных форматов.

А вот фотоэлектрическая панель в сборе.

На практике фотоэлектрические элементы используются в комплекте с дополнительным оборудованием, которое служит для преобразования тока, для его аккумуляции и последующего распределения между потребителями. В комплект домашней солнечной электростанции входят следующие устройства:

  1. Фотоэлектрические панели – основной элемент системы, генерирующий электричество при попадании на него солнечного света.
  2. Аккумуляторная батарея – накопитель электроэнергии, позволяющий обеспечивать потребителей альтернативным электричеством даже в те часы, когда СБ его не вырабатывают (например, ночью).
  3. Контроллер – устройство, отвечающее за своевременную подзарядку аккумуляторных батарей, одновременно защищающее аккумуляторы от перезарядки и глубокого разряда.
  4. Инвертор – преобразователь электрической энергии, позволяющий получать на выходе переменный ток с требуемой частотой и напряжением.

Схематично система электроснабжения, работающая от солнечных батарей, выглядит следующим образом.

Схема довольно проста, но для того, чтобы она эффективно работала, необходимо правильно рассчитать рабочие параметры всех задействованных в ней устройств.

Расчет фотоэлектрических панелей

Первое, что необходимо знать, собираясь рассчитывать конструкцию фотоэлектрических преобразователей (панелей ФЭП), это количество электроэнергии, которое будет потреблять оборудование, подключенное к солнечным батареям. Просуммировав номинальную мощность будущих потребителей солнечной энергии, которая измеряется в Ваттах (Вт или кВт), можно вывести среднемесячную норму потребления электроэнергии – Вт*ч (кВт*ч). А требуемая мощность солнечной батареи (Вт) будет определяться, исходя из полученного значения.

Вычисляя суммарную потребляемую мощность, следует учитывать не только номинал электроприборов, но и среднесуточное время работы каждого устройства.

Для примера рассмотрим перечень электрооборудования, которое сможет обеспечивать энергией небольшая солнечная электростанция мощностью 250 Вт.

Таблица взята с сайта одного из производителей солнечных панелей.

Налицо несоответствие между суточным потреблением электроэнергии – 950 Вт*ч (0,95 кВт*ч) и значением мощности солнечной батареи – 250 Вт, которая при непрерывной работе должна генерировать в сутки 6 кВт*ч электроэнергии (что намного больше обозначенных потребностей). Но раз уж мы говорим именно о солнечных панелях, то следует помнить, что свою паспортную мощность эти устройства способны развивать только в светлое время суток (примерно с 9-ти до 16-ти часов), да и то в ясный день. В пасмурную погоду выработка электроэнергии также заметно падает. А утром и вечером объем электроэнергии, вырабатываемой батареей, не превышает 20–30% от среднесуточных показателей. К тому же, номинальная мощность может быть получена с каждой ячейки только при наличии оптимальных для этого условий.

tran13 Пользователь FORUMHOUSE

Почему номинал батареи 60 Вт, а она выдает 30? Значение 60 Вт производители ячеек фиксируют при инсоляции в 1000Вт/м² и температуре батареи – 25 градусов. Таких условий на земле, а тем более в средней полосе России, нет.

Все это учитывается, когда в конструкцию солнечных панелей закладывается определенный запас мощности.

Теперь поговорим о том, откуда взялся показатель мощности – 250 кВт. Указанный параметр учитывает все поправки на неравномерность солнечного излучения и представляет собой усредненные данные, основанные на практических экспериментах. А именно: измерение мощности при различных условиях эксплуатации батарей и вычисление ее среднесуточного значения.

Leo2 Пользователь FORUMHOUSE

Когда узнаете объем потребления, выбирайте фотоэлектрические элементы, исходя из требуемой мощности модулей: каждые 100Вт модулей вырабатывают 400-500 Вт*ч в сутки.

Для более точного определения потребностей в электричестве необходимо учитывать не только мощность электроприборов, но и дополнительные потери электроэнергии: естественные потери на сопротивление проводников, а также потери на преобразование энергии в контроллере и инверторе, которые зависят от КПД этих устройств.

При осуществлении дальнейших расчетов будем ориентироваться на данные уже знакомой нам таблицы. Итак, предположим, что суммарная мощность потребления равна примерно 1 кВт*ч в сутки (0,95 кВт*ч). Как мы уже знаем, нам понадобится солнечная батарея, обладающая номинальной мощностью – не менее 250 Вт.

Предположим, что для сборки рабочих модулей вы планируете использовать фотоэлектрические ячейки с номинальной мощностью – 1,75 Вт (мощность каждой ячейки определяется произведением силы тока и напряжения, которые генерирует солнечный элемент). Мощность 144-х ячеек, объединенных в четыре стандартных модуля (по 36 ячеек в каждом), будет равна 252 Вт. В среднем с такой батареи мы получим 1 – 1,26 кВт*ч электроэнергии в сутки, или 30 – 38 кВт*ч в месяц. Но это в погожие летние дни, зимой даже эти значения можно получить далеко не всегда. При этом в северных широтах результат может быть несколько ниже, а в южных – выше.

Baracud Пользователь FORUMHOUSE

Есть солнечные батареи – 3,45 кВт. Работают параллельно с сетью, поэтому КПД – максимально возможный:

  • июнь 467кВт*ч.
  • июль 480 кВт*ч.
  • август 497 кВт*ч.
  • сентябрь 329 кВт*ч.
  • октябрь 305 кВт*ч.
  • ноябрь 320 кВт*ч.
  • декабрь 216 кВт*ч.
  • январь 2014 пока 126 кВт*ч.

Эти данные чуть выше средних значений, т. к. солнца было больше обычного. Если циклон затяжной будет, то выработка в зимний месяц может не превысить 100-150 кВт*ч.

Представленные значения – это киловатты, которые можно получить непосредственно с солнечных батарей. Сколько же энергии дойдет до конечных потребителей – это зависит от характеристик дополнительного оборудования, встроенного в систему электроснабжения. О них мы поговорим позже.

Как видим, количество солнечных элементов, необходимых для генерирования заданной мощности, можно рассчитать лишь приблизительно. Для более точных расчетов рекомендуется использовать специальные , которые помогут определить требуемую мощность батареи в зависимости от многих параметров (в том числе, и от географического положения вашего участка).

Каким бы ни получилось конечное значение рекомендуемой мощности, всегда необходимо иметь ее некоторый запас. Ведь со временем электротехнические характеристики солнечной батареи снижаются (батарея стареет). За 25 лет эксплуатации среднестатистическая потеря мощности солнечных панелей составляет 20%.

Если с первого раза произвести правильный расчет фотоэлектрических панелей не удалось (а непрофессионалы очень часто сталкиваются с подобной проблемой), это не беда. Недостающую мощность всегда можно будет восполнить, установив несколько дополнительных фотоэлементов.

Напряжение и сила тока на выходе из панелей должны соответствовать параметрам контроллера, который будет к ним подключен. Это необходимо предусмотреть на стадии расчета солнечной электростанции.

Разновидности фотоэлектрических элементов

С помощью настоящей главы постараемся развеять заблуждения, касающиеся преимуществ и недостатков наиболее распространенных фотоэлектрических элементов. Это упростит вам выбор подходящих устройств. Широкое распространение сегодня получили монокристаллические и поликристаллические кремниевые модули для солнечных батарей.

Так выглядит стандартный солнечный элемент (ячейка) монокристаллического модуля, который можно безошибочно отличить по скошенным углам.

Ниже представлено фото поликристаллической ячейки.

Какой модуль лучше? Пользователи FORUMHOUSE активно . Кто-то считает, что поликристаллические модули работают более эффективно при пасмурной погоде, при этом монокристаллические панели демонстрируют превосходные показатели в солнечные дни.

Gaara Пользователь FORUMHOUSE

У меня моно – 175 Вт дают на солнце под 230 Вт. Но я отказываюсь от них и перехожу на поликристаллы. Потому что, когда небо чистое, электричества хоть залейся с любого кристалла, а вот когда пасмурно – мои вообще не работают.

При этом всегда найдутся оппоненты, которые после проведения практических замеров полностью опровергают представленное утверждение.

Воцзяо Пользователь FORUMHOUSE

У меня получается все наоборот: поликристаллы очень чувствительны к затемнению. Стоит маленькому облачку пройти по солнцу, как это сразу отражается на количестве вырабатываемого тока. Напряжение, кстати, практически не меняется. Монокристаллическая же панель ведет себя более стабильно. При хорошем освещении обе панели ведут себя очень хорошо: заявленная мощность обеих панелей – 50Вт, обе эти самые 50Вт выдают. Отсюда мы видим, как улетучивается миф о том, что монопанели дают больше мощности при хорошем освещении.

Второе утверждение касается срока службы фотоэлектрических элементов: поликристаллы стареют быстрее монокристаллических элементов. Рассмотрим данные официальной статистики: стандартный срок службы монокристаллических панелей составляет 30 лет (некоторые производители утверждают, что такие модули могут работать до 50 лет). При этом период эффективной эксплуатации поликристаллических панелей не превышает 20-ти лет.

Действительно, мощность солнечных батарей (даже с очень высоким качеством) с каждым годом эксплуатации уменьшается на определенные доли процента (0,67% – 0,71%). При этом в первый год эксплуатации их мощность может снизиться сразу на 2% и 3% (у монокристаллических и поликристаллических панелей – соответственно). Как видим, разница есть, но она незначительна. А если учесть, что представленные показатели во многом зависят от качества фотоэлектрических модулей, то разницу и вовсе можно не брать во внимание. Тем более, известны случаи, когда дешевые монокристаллические панели, изготовленные нерадивыми производителями, теряли до 20% своей мощности в первый же год эксплуатации. Вывод: чем надежнее производитель фотоэлектрических модулей, тем долговечнее его продукция.

Многие пользователи нашего портала утверждают, что монокристаллические модули всегда дороже поликристаллических. У большинства производителей разница в цене (в пересчете на один ватт генерируемой мощности) на самом деле ощутима, что делает покупку поликристаллических элементов более привлекательной. Поспорить с этим нельзя, но не поспоришь и с тем, что КПД монокристаллических панелей выше, чем у поликристаллов. Следовательно, при одинаковой мощности рабочих модулей поликристаллические батареи будут иметь большую площадь. Иными словами, выигрывая в цене, покупатель поликристаллических элементов может проиграть в площади, что при недостатке свободного пространства под установку СБ может лишить его так очевидной на первый взгляд выгоды.

Captain Deadly Пользователь FORUMHOUSE

У распространенных монокристаллов КПД, в среднем, равняется 17%-18%, у поли – около 15%. Разница – 2%-3%. Однако по площади эта разница составляет – 12%-17%. С аморфными панелями разница еще нагляднее: при их КПД – 8-10% монокристаллическая панель может быть по площади в два раза меньше аморфной.

Аморфные панели – это еще одна разновидность фотоэлектрических элементов, которые пока не успели стать достаточно востребованными, несмотря на свои очевидные преимущества: низкий коэффициент потери мощности при повышении температуры, способность генерировать электроэнергию даже при очень слабом освещении, относительная дешевизна одного производимого кВт энергии и так далее. А одна из причин низкой популярности кроется в их весьма ограниченном КПД. Аморфные модули еще называют гибкими модулями. Гибкая структура значительно облегчает их установку, демонтаж и хранение.

Jabber Пользователь FORUMHOUSE

Выбирая рабочие элементы для строительства солнечных батарей, в первую очередь следует ориентироваться на репутацию их производителя. Ведь именно от качества зависят их реальные рабочие характеристики. Также нельзя упускать из вида условия, при которых будет производиться монтаж солнечных модулей: если площадь, отведенная под установку солнечных батарей, у вас ограничена, то целесообразно использовать монокристаллы. Если недостатка в свободном пространстве нет, то обратите внимание на поликристаллические или аморфные панели. Последние могут оказаться даже практичнее панелей кристаллических.

Еще одно преимущества аморфных панелей перед панелями кристаллическими состоит в том, что их элементы можно устанавливать непосредственно в оконные проемы (на месте обычных стекол) или даже использовать их для отделки фасадов.

Приобретая готовые панели от производителей, можно значительно упростить себе задачу по строительству солнечных батарей. Для тех же, кто предпочитает все создавать своими руками, процесс изготовления солнечных модулей будет описан в продолжении настоящей статьи. Также в ближайшее время мы планируем рассказать о том, по каким критериям следует выбирать аккумуляторы, контроллеры и инверторы – устройства, без которых ни одна солнечная батарея не сможет функционировать полноценно. Следите за обновлениями нашей статейной ленты.

На фото изображены 2 панели: самодельная монокристаллическая на 180Вт (слева) и поликристаллическая от производителя на 100 Вт (справа).

Вы сможете узнать в соответствующей теме, открытой для обсуждения на нашем портале. В разделе, посвященном , можно узнать много интересного об альтернативной энергетике и о солнечных батареях, в частности. А небольшой видеосюжет расскажет об основных элементах стандартной солнечной электростанции и об особенностях установки солнечных панелей.

Инструкция

Учтите, что при выборе системы солнечных , которая подошла бы для вашего дома, существует несколько определяющих факторов. Во-первых, это климатические характеристики местности, в которой расположено жилище. От этого зависит продолжительность солнечного сияния над вашим и батареей, а, соответственно, и время накопления энергии. Определите, насколько подходящая у вас местность для расположения солнечных батарей по освещенности.

Учитывайте при выборе солнечной батареи также количество тепла, которое вы хотите получить в результате. Оптимальный вариант – батарея, способная покрыть от сорока до восьмидесяти потребностей в тепле. Системы, имеющие меньшую эффективность, могут обойтись очень дорого. При этом также необходимо учитывать возможность проектировки и расчет системы. Это гарантирует вам надежность полученной системы и возможность противостояния форс-мажорным обстоятельствам ( от источника электроэнергии, непогода). Доверьте эти расчеты специалистам.

Обращайте внимание на производителя солнечной батареи, а также на материал, из которого изготовлен фотоэлектронный элемент модулей. Это может быть поликристаллический либо монокристаллический кремний. От этого зависит цена, КПД, а также длительность батареи. Монокристаллический кремний – материал, стойкий к различным агрессивным воздействиям, КПД батарей, изготовленных из него, может увеличиваться до 20%. В продаже также появились мультикристаллические батареи, изготовленные из поликристаллов, но названные так для того, чтобы ввести покупателя в заблуждение. Пример использования поликристаллических элементов – это садовые , которые куда меньше а второй сезон использования.

Учитывайте также, что толщина фотоэлектрических элементов обеспечит эмиссию электронов пожизненно, а вот толщина фольги только обеспечивает дешевизну, к чему стремятся китайские производители. Обратите внимание на структуру поверхности стекла, если оно текстурированное, то мощность входного облучения будет увеличена на 15%, а благодаря этому повысится и КПД солнечной батареи, особенно в пасмурное время года.

Существует множество видов солнечных батарей, различающихся по мощности и стоимости, поэтому человеку, решившему приобрести ее, порой нелегко определиться и выбрать наиболее подходящую.

Солнечные батареи для разных видов техники

Для того чтобы не ошибиться в выборе солнечной батареи, необходимо четко знать: каковы требуемые характеристики солнечной батареи, к каким приборам вы планируете подключать ее. Ведь одно дело – зарядить мобильный телефон и совсем другое – обеспечить работу полноразмерной бытовой техники.

Солнечная батарея – довольно дорогое устройство, поэтому едва ли стоит покупать модель, намного более мощную, чем требуется. Это будет напрасной тратой денег. Например, если вам нужно заряжать мобильные телефоны, смартфоны, электронные книги, и аналогичные маломощные виды бытовой техники, вас вполне устроит модель с невысоким выходным напряжением (порядка 9 вольт). Разновидностей таких моделей – множество. Как правило, они имеют в комплекте встроенный аккумулятор для подзарядки какой-либо техники в вечернее время или пасмурную погоду. По виду они могут напоминать обычный сотовый телефон. Также предусмотрен более практичный вариант солнечных батарей, например, в виде декоративных элементов, украшающих сумку.

Такая сумка очень удобна для использования в ясную погоду.

Для подзарядки ноутбуков нужны уже более мощные батареи. Большинство современных ноутбуков потребляют напряжение питания от 12 до 19 Вольт. Поэтому если вы хотите приобрести солнечную батарею, пригодную такого вида техники, обратите внимание на ее характеристики. Выходное напряжение батареи должно быть не меньше напряжения питания ноутбука. Проверьте также, можно ли регулировать напряжение батареи в сторону его уменьшения (чтобы она была пригодна для зарядки сотовых телефонов и прочей мелкой мобильной техники).

Наиболее мощные модели солнечных батарей предназначены для питания полноразмерной бытовой техники, требующей напряжения 220 Вольт. Соответственно, они и стоят дороже других типов батарей. Такие устройства используются, главным образом, за пределами квартиры, или дома, например, во время туристических походов, поездок, работы на дачном участке, где не проведено электричество и т.д.

Важна не только величина выходного напряжения солнечной батареи. Прежде всего, выберите устройство, имеющее наиболее оптимальный вес и размеры. Обратите внимание на то, снабжена ли батарея встроенным аккумулятором и какова его емкость. Ведь если он отсутствует, вы сможете использовать батарею только в светлое время суток, и в солнечную погоду. Постарайтесь также выбрать батарею, снабженную индикатором уровня зарядки аккумулятора.

В некоторых моделях солнечных батарей предусмотрена возможность зарядки аккумулятора не только с помощью солнечного света, но и от обычной бытовой сети, и даже от электрической системы автомобиля. Если вы хотите иметь возможность зарядки аккумулятора в любых , выберите модель, снабженную не только сетевым адаптером, но и штекером, с помощью которого можно подключить аккумулятор к гнезду автомобильного прикуривателя.

Что касается внешнего вида солнечных батарей, то, как уже было упомянуто, существует множество их разновидностей. Есть даже солнечные батареи в виде гибких пленок, которые при перевозке можно свернуть в трубку. Есть и довольно солидные по размеру стационарные модели, которые размещаются либо на дачных участках, либо на крышах частных домов. Поскольку они самые дорогие, к их выбору необходимо подойти особенно ответственно.

На российском рынке представлены солнечные батареи самых различных производителей, в том числе российские и китайские. Поскольку китайские батареи имеют самую низкую цену, многие потребители останавливают свой выбор именно на них. Однако невысокая стоимость в большинстве случаев основана на том, что в китайских солнечных батареях используется тонкопленочный кремний. А такие батареи имеют ряд существенных недостатков. Прежде всего они самые малоэффективные, по сравнению с монокристаллическими или поликристаллическими. Кроме того, такие батареи могут быстро выйти из строя.

На большинство батарей, изготовленных из тонкослойного кремния, плохо влияют значительные перепады температур, особенно зимние холода, а ведь в России суровые зимы – обычное явление.

Поэтому если вы выбираете стационарную батарею, с расчетом на то, что она прослужит долгие годы и окупит себя, вам желательно приобрести продукцию известных брендов, где использованы либо монокристаллические либо поликристаллические кремневые пластины. Они стоят существенно дороже тонкопленочных кремниевых батарей, но гораздо эффективнее и надежнее. Это как раз тот случай, когда первоначальная экономия может впоследствии обернуться немалыми убытками. Конечно, перед покупкой постарайтесь собрать как можно больше информации о производителях.

Рост тарифов на электроэнергию заставляет задуматься о необходимости альтернативных ее источников, которые могли бы полностью или частично компенсировать расходы. Одним из таких источников является солнечная энергия, которую с помощью нехитрых технических приспособлений, легко можно преобразовать в электрическую. На Западе, где население научилось считать деньги уже давно, солнечные батареи можно увидеть повсюду, даже в странах, которые южными уж никак не назовешь.

Специфика эксплуатации солнечных батарей

Не стоит думать, что в России нет смысла использовать солнечные батареи для электроснабжения дома. Это не так. Известно, что солнечные лучи, перпендикулярно направленные на поверхность фоточувствительного элемента, при 100% КПД способны генерировать электрический ток до 1 кВт на 1 квадратный метр. Конечно, на российской территории среднемесячная величина солнечной различна. Для северных районов в зимнее время она составляет 17 кВт, для Москвы – 20 кВт, для самых южных районов – 60 кВт, но в летнее время эти величины уже значительно больше: 66, 160 и 185 кВт, соответственно. Получается, что с учетом пасмурных дней и отличного от 100% КПД, даже для Москвы вполне реально получать в среднем 90 кВт в месяц или около 3 кВт в течение одного дня, используя солнечную батарею площадью около 2 квадратных метров.

С учетом того, что площадь батареи можно увеличить, увеличится и количество бесплатной электрической энергии. Однако в качестве фоточувствительного элемента используются монокристаллы кремния, а это достаточно дорогой материал. Если купить солнечную батарею мощностью 100 Вт, имеющую на выходе 12 В, заплатить придется около 200 $, вполовину меньше обойдется батарея мощностью 40 Вт. Такие готовые батареи, снабженные разъемами, можно установить на даче или в загородном доме, но чтобы превратить их в настоящую солнечную электростанцию, потребуются еще дополнительные расходы: на буферный аккумулятор и повышающий инвертор. Понятно, что стоимость такой установки будет достаточно высока, поэтому, чтобы снизить расходы, стоит поискать возможность приобрести солнечные батареи по более низкой стоимости.

Как покупать солнечные батареи в магазине

Если вы решили обратиться в магазин, выбирайте солнечные батареи известных мировых производителей. Не стоит торопиться, поговорив с продавцами, вернитесь домой и посмотрите информацию о производителе в интернете. Чем крупнее производство, чем больше его импорт в страны Европы и США, тем больше вероятность того, что качество батарей будет достаточно высоким. Дополнительным плюсом будет большой опыт производства и продаж этого высокотехнологичного оборудования, подтвержденный международными сертификатами качества и безопасности. В этом случае, вы можете рассчитывать на гарантию производителя, обеспечивающую безупречную работу батарей и сохранение высокого КПД в течение 10 и более лет. Интересно, что некоторые европейские марки даже страхуют покупательские риски на случай, если компания-производитель перестанет существовать.

Имейте в виду, что качество солнечных панелей имеет конкретное обозначение, так батареи собранные только из монокристаллических элементов, не имеющих сколов, трещин и царапин, будут иметь класс Grade A, а те, в которых некоторые элементы имеют дефекты, обозначаются Grade B или Grade С. Естественно, и цена у таких батарей будет ниже. Впрочем, если вы хотите сэкономить, можно купить батареи невысокого класса, у которых имеется несколько сколов по краям элементов – на качестве работы батареи это почти не отразится, разве только на ее внешнем виде. Если вы проживаете в северных районах, где много снега и на батареях может образовываться наледь, покупайте модели с черной рамой и черным же заполнением между элементами – так снег и наледь будут таять даже при малых углах наклона панели.

К неоспоримым достоинствам солнечных батарей относится возможность их наращивания, увеличения общей площади. Поэтому если сегодня у вас нет возможности купить достаточное количество качественных и дорогостоящих батарей, может быть, есть смысл купить меньшее число, а затем докупить еще, тем более, что срок службы монокристаллических элементов составляет до 50 лет.

Как сэкономить на покупке солнечных батарей

Если говорить о приобретении дешевой продукции китайского производства, к ней в полной мере можно применить поговорку о том, что скупой платит дважды. В таких солнечных батареях используются аморфные поликристаллы кремния, которые уже через 6-8 года теряют свои эксплуатационные качества, поэтому такую батарею вам придется менять очень скоро.

На зарубежных сайтах комплекты для сборки солнечных батарей называются фотоэлектрическими комплектами или схемами, а также солнечными зарядными устройствами.

Но есть прекрасная возможность сэкономить, собрав батарею , используя ячейки, которые продаются отдельно. Мощность одной такой ячейки составляет порядка 0,5 Вт и 40-ваттная батарея обойдется вам менее чем в 1 тысячу рублей. Собрав их в одну панель и снабдив контроллером заряда и инверторным преобразователем, позволяющим получать 220 В на выходе, вы получите полноценную солнечную батарею по весьма небольшой цене.

Заказывая фотоэлементы, имейте в виду, что класс А и А+ означает отсутствие дефектов, а класс В – наличие мелких дефектов, такие комплектующие будут стоить еще дешевле.

Купить ячейки для батареи вы можете в интернет-магазинах, в том числе и на тех, что расположены на западных доменах. Они продаются комплектами и вместе с доставкой их стоимость может в среднем быть равна около 1$ а 1 Вт. Там же вы можете найти и уже собранные солнечные батареи, судя по отзывам, достаточно хорошего качества и по невысоким ценам

Система солнечных батарей, которые преобразовывают солнечную энергию в ток, состоит из контроллера заряда, аккумулятора, инвертора и самих батарей. Стоимость подобных комплексов зависит от технических характеристик и комплектации. Перед тем как приобрести солнечные батареи, нужно проделать определенные расчеты.

Сколько стоит солнечная панель?

Различные предприятия продают и уже готовые системы, и отдельно панели или солнечные батареи. Система, предполагающая наличие аккумуляторов, поглощает солнечный свет на протяжении светлой части суток, питает работающие электрические приборы и сохраняет излишек в аккумуляторах. Существуют готовые системы без аккумуляторов, они подсоединяются напрямую к электросетям, куда и передают избыток солнечной энергии. Такие системы распространены в США и Европе, но в России они только начинают выходить на рынок, сталкиваясь с рядом проблем. Например, до сих пор не разработаны механизмы реализации избытка энергии и получения компенсации за них.

Солнечные батареи активно используются в космических разработках.

Нужно понимать, что цена на уже укомплектованные системы ниже, чем на отдельные батареи-панели. На рынке можно найти солнечные панели финских, американских, немецких и российских производителей. В настоящее время появляется все больше панелей корейского и китайского производства.

Например, панели мощностью в 100 Вт, сделанные в Финляндии, можно купить за четырнадцать тысяч рублей. Российские аналоги стоят чуть дороже - от четырнадцати с половиной до семнадцати тысяч рублей. А вот китайцы предлагают покупать подобную продукцию всего за восемь тысяч. Корейские модели мощностью в 100 Вт будут стоить чуть дороже - между девятью и десятью тысячами.

Сколько панелей нужно на дом?

Стоит учитывать, что совсем экономить на солнечных панелях нежелательно. Подозрительно дешевые модели могут оказаться некачественными, а срок их эксплуатации может быть довольно коротким. В среднем солнечные панели окупаются в промежутке от двух до пяти лет, все зависит от вида самих панелей, типа местности и производителя. Цены на солнечные батареи поначалу пугают, но после расчета окупаемости картина становится совсем иной.

Чтобы рассчитать нужную мощность солнечных панелей для конкретного дома, нужно опытным путем определить среднесуточное энергопотребление всей электрической техники. Это можно сделать, умножив потребляемую мощность каждого из приборов на время, в течение которого он используется. Результаты подобных подсчетов по всем приборам надо суммировать. Попутно можно замерить показания электросчетчика , чтобы примерно проверить полученный результат.

Первые солнечные батареи появились в 1954 году.

Дальше нужно определить номинальную мощность системы солнечных панелей и ее эффективность в конкретные сезоны и временные промежутки. Эти данные можно найти в сопроводительной документации конкретных моделей солнечных батарей. Коэффициент инсоляции (уровня солнечного освещения) можно отыскать в специальных справочниках. На основании этих данных можно вычислить необходимое для дома количество и мощность солнечных панелей.

Солнечные батареи пользуются все большей популярностью не только в военном деле, на производстве или при проектировании транспортных средств. Их преимущества давно оценили те, кто заинтересован в экономии электроэнергии и стремится к созданию комфортных условий для жизни в собственном доме.

Инструкция

Солнечные батареи давно и с успехом применяются в космонавтике. Они становятся незаменимыми автономными источниками энергии, способными питать бортовые системы космических аппаратов. Чтобы аппаратура пилотируемых кораблей и спутников могла работать без перебоев, в том числе и на теневых участках орбиты, космические корабли оснащают аккумуляторами, которые подзаряжаются от солнечных батарей.

Вторая перспективная область применения солнечных батарей – техника. При полетах в светлое время суток солнечные панели аккумулируют энергию, после чего постепенно отдают ее бортовым системам самолета. Авиационные комплексы, которые проектируются для научных целей, в будущем, возможно, будут летать только с использованием энергии, полученной с помощью солнечных батарей.

Большое значение солнечные батареи имеют для жизнеобеспечения жилых зданий и промышленных сооружений. Такие устройства могут быть источниками резервного питания, например, когда требуется обеспечить бесперебойную работу различных систем в случае аварийного отключения энергии. В тех регионах, где количество солнечных дней в году достаточно велико, комплексы из солнечных батарей могут стать основным источником автономного энергоснабжения домов.

Известны случаи использования энергии Солнца для поддержания работы уличного освещения. Солнечными батареями оснащают также автономные технические объекты, расположенные вдали от стационарных линий электропередач, например, маяки, датчики для съема метеорологической информации, надводные буи и разного рода информационные указатели.

Конструкторы автомобильной техники также пристально присматриваются к солнечным батареям. Такие устройства, способные аккумулировать дешевую энергию, все чаще можно встретить на экспериментальных моделях автомобилей. Панели из специальных датчиков, установленные на крыше транспортного средства, накапливают энергию, чтобы затем отдать ее при езде в темное время суток. Солнечные батареи – путь к созданию экологически чистого транспорта.

Инженеры и изобретатели из Южной Кореи активно разрабатывают солнечные , которые вскоре будут пригодны для подзарядки самых всевозможных гаджетов – ноутбуков, планшетов, мобильных телефонов и так далее. Подобные миниатюрные солнечные батареи хороши тем, что могут быть использованы вдали от электрических сетей. Такие приспособления вполне способны обеспечивать энергией и бытовые приборы, например, утюги или электрические .

Видео по теме

Устройства на солнечных батареях становятся все более популярными. Солнечное излучение - возобновляемый, экологичный и экономичный источник энергии. К тому же устройства на солнечных батареях легко заряжать в походных условиях и там, где недоступна электрическая энергия.

Инструкция

Устройства, работающие от солнечных батарей, очень удобны в условиях, когда отсутствуют другие источники энергии, кроме солнечного света, и в длительных поездках. Также в такой ситуации полезны зарядные устройства с подобным принципом работы, т.к. они позволяют зарядить телефон, фотоаппарат, плеер и т.д. Это удачное решение для тех, кто ведет активный образ жизни - туристов, спортсменов, альпинистов. Кроме того, это хороший способ, когда имеют место перебои в электроснабжении. Если пользоваться батареей большого объема, то она будет заряжать устройства даже ночью, когда солнечный свет отсутствует.

Солнечная батарея состоит из последовательно и параллельно соединенных фотоэлементов, располагающихся на каркасе из непроводящих материалов. Фотоэлементы действуют за счет фотогальванического эффекта. Энергия солнечных лучей преобразуется в электрическую с помощью фотоэлементов - специальных полупроводников. Фотоэлемент состоит из двух слоев, имеющих разную проводимость. К ним подпаивают контакты с разных сторон. За счет фотоэффекта при попадании на электроны света происходит их движение. Также образуются свободные электроны, которые обладают дополнительной энергией и способны двигаться дальше остальных. За счет изменения концентрации электронов образуется разность потенциалов. Когда происходит замыкание внешней цепи, через нее начинает течь электрический ток. Фотоэлементы могут создавать разность потенциалов разной величины, в зависимости от его размера, интенсивности солнечного излучения, температуры и т.д.

Обычно в устройствах соединены несколько фотоэлементов, из которых получается солнечная батарея (другие названия - солнечный модуль, солнечная сборка). Причина в том, что разность потенциалов, обеспечиваемая одним фотоэлементом, недостаточна для работы устройства. Для защиты хрупких фотоэлементов используется покрытие из пластика, стекла и пленок. Основной материал, из которого производят фотоэлементы, - кремний. Это очень распространенный элемент на планете, однако его очистка трудоемкая и дорогостоящая, поэтому ищутся аналоги.

За счет последовательного соединения фотоэлементов достигается повышенная разность потенциалов, а за счет параллельного - ток. Комбинация последовательных и параллельных соединений позволяет получить желаемые параметры по напряжению и току, а значит и по мощности.

Пиковая мощность, выражаемая в Ваттах (Вт, W), - это основная рабочая характеристика солнечной батареи. Она показывает мощность батареи, которая проявляется в оптимальных условиях - температуре окружающей среды 25 градусов по Цельсию, солнечном излучении 1 кВт/м2, и солнечном спектре шириной 45 градусов. Но обычно освещенность ниже, а температура выше, поэтому пиковой мощности батареи сложно достичь.

Видео по теме

Совет 7: Солнечные батареи для дачи и дома: принцип работы и расчет необходимого количества

Когда встает вопрос об автономной электрификации, выбирают между ветровыми турбинами и солнечными панелями. Первые работают всегда, но занимают много места и могут быть опасны. Поэтому чаще всего для дачи и дома отдают предпочтение солнечным батареям: принцип работы и расчет необходимого количества панелей довольно прост для самостоятельного изучения.

Принцип действия

Солнечный свет - это набор электромагнитных волн, которые распространяются от звезды в огромном количестве. К сожалению, фотоэлементы, которые ловят это излучение, недостаточно эффективны, и на данный момент на рынке распространены батареи с КПД от 10 до 20%.

Любая современная гелиоэлектростанция, которую решили устанавливать на загородный дом, работает на принципе P-N перехода. Панель состоит из двух пластин полупроводников, соприкасающихся между собой. Когда на верхнюю часть попадает солнечный свет, он передает электронам, содержащимся в материале, часть своей энергии. После этого они начинают путешествие в другой слой, чтобы уравновесить заряды.

Чтобы создать полноценную панель, два полупроводника соединяют между собой, нанося на верхний тонкие полоски металла, которые облегчают прохождение электронов к аккумулятору, а через него происходит электроснабжение приборов. Сбрасывая напряжение в накопители, частицы перемещаются на металлическую пластину основания, а после этого в нижний, темный слой, откуда проталкиваются опять к верхнему. Получается замкнутый цикл, движущей силой которого служит солнечный свет.

Виды пластин

Существует несколько направлений солнечных панелей, которые можно использовать в частном доме. По материалам самыми распространенными являются кремневые пластины и полимерные пленки. В каждом способе присутствуют как свои преимущества, так и недостатки, поэтому необходимо рассмотреть каждый вид по отдельности.

Пластины, содержащие кремень, работают наиболее эффективно, в сравнении с другими известными человечеству фотоэлементами. При попадании солнечных лучей на кремень, энергия, заключенная в них, смещает электроны с орбиты атомов, производя постоянный ток. Частицы, двигаясь к накопителю, сбрасывают заряд, возвращаются к атомам, где снова подвергаются бомбардировке энергией. Но производство таких панелей довольно затратное как по средствам, так и по выбросам в окружающую среду. Поэтому сейчас в лабораториях идет поиск более экологичных и эффективных способов извлечения энергии из света.

Характеристика кремневых панелей:

  1. Монокристаллические батареи, имеют самый высокий КПД, которое для распространенных моделей составляет 20-22%. Все фотоэлементы, из которых состоит панель, направлены в одну сторону, что требует установки ее под определенным углом к солнечным лучам. При смещении угла количество вырабатываемого тока значительно снижается. Сумерки, затененное место и неправильно падающий свет слабо улавливается ячейками, из-за чего батарея не вырабатывает энергию. Поэтому такой модуль рационально устанавливать при большом количестве прямых солнечных лучей и ясных дней.
  2. Поликристаллические батареи. Их КПД в пределах 17-18% из-за того, что часть кремниевых пластинок направлены в разные стороны. Благодаря этому увеличивается время работы, и можно использовать в облачную погоду или затемненном месте.
  3. Аморфные панели. КПД до 10%, что обусловлено слишком тонким слоем кремния, напыляемого на подложку из металла или пластика. Постепенно эффективность снижается, и через 3-4 года батарея может прекратить работу. Но благодаря случайному направлению кремниевых чешуек, улавливается весь возможный свет.
  4. Гибридные панели состоят из монокристаллических ячеек, вместе с которыми используют и аморфное нанесение. Это увеличивает захват световых лучей и время работы, что повышает КПД.

Отдельно выделяются полимерные солнечные батареи, которые производятся с помощью печати нескольких слоев на пластиковой подложке. Из-за того, что фоточувствительный материал не требует жесткого основания, чаще всего такие панели выпускают гибкими. Такая особенность дает возможность использовать их на любой поверхности. КПД достигает 6%, но производство достаточно дешевое из-за отказа от дорогостоящего кремния и потерь при транспортировке. Но к сожалению, технология довольно новая, и имеет меньшее распространение.

Энергопотребление дома

Если в доме проживают постоянно и довольно давно, то количество потребляемой энергии можно посмотреть в квитанциях. Но все равно это будет только общей картиной, не предоставляющей возможности понять, как потребление меняется в зависимости от дня недели и времени суток. Для того чтобы это узнать потребуется дополнительно рассчитать, какая часть из общей массы электричества идет на поддержания работы приборов в фоновом режиме, а что используется осознано.

Порядок определения потребления энергии:

  1. Для начала следует обойти весь дом, и записать все оборудование, которое потребляет энергию беспрерывно. К таким относятся холодильники, морозильные камеры, бойлеры, теплые полы, телефоны и прочее. После этого следует свериться с инструкцией, чтобы узнать сколько КВт/ч потребляют те или иные устройства. На данном этапе часто происходит отсечение не используемой техники, что сокращает расход средств.
  2. Когда стал известен постоянный расход энергии, начинают рассчитывать переменный. Малый пиковый период приходится на утренние часы, когда все собираются на работу или в школу. А большой пик необходимости в электричестве наступает после 17-18 часов, когда возвращаются с работы. Но все это зависит от привычек каждой семьи, и необходимо провести исследование, когда именно и как долго используются осветительные приборы, а также другая техника. Самыми большими потребителями являются аппараты для приготовления пищи, телевизоры и стационарные компьютеры, поэтому особенно важно точно посчитать время их работы.
  3. После того, как стало известно потребление бытовых приборов, начинают следить за частотой использования осветительных приборов. Важно понять, что в зимний период светает позже, а темнеет раньше. В Московской области световой день, при котором на улице хорошо видны предметы без дополнительного освещения, всего 8 часов. Время нормальной освещенности помещения с помощью солнечных лучей еще меньше, поэтому на лампы приходится значительная нагрузка, и их обязательно надо учитывать.

Когда все значения зафиксированы, конечное значение обязательно умножают на 10-20%, чтобы создать резерв для непредвиденных ситуаций. Это значение и нужно использовать для расчета дополнительного оборудования и площади солнечных панелей.

Схема расчета необходимой мощности

В зависимости от количества солнечных дней и освещенности участка, выбирают тип панели. Для того чтобы полностью обеспечить частный дом, понадобится энергетический показатель потребления дома. Чтобы облегчить расчет необходимо сделать следующее:

  • вычесть из общей суммы работу приборов, происходящую в солнечные часы;
  • оставшееся значение разделить на солнечный период.

Именно столько электричества в час должно поступать и сохраняться в аккумуляторе для нормального функционирования дома. Но прежде чем покупать панели, необходимо узнать уровень инсоляции (количество лучей попадающих на поверхность) в данном регионе. Если установка будет работать в доме с постоянным проживанием, нужно смотреть на самое минимальное значение за год. А если это дача для летнего проживания, выбирают минимальное значение для теплого времени года.

Общую сумму разделяют на уровень инсоляции и производительность выбранной панели. В результате получают минимальное количество штук, которые необходимы для функционирования дома. При этом важно чтобы десятые доли округлялись в большую сторону.

Дополнительное оборудование

Сами панели нельзя подключить к электросети дома. Для этого понадобится еще несколько устройств.

Комплектующие:

  1. Контроллер, предотвращающий перепады тока. Панель можно подключать только через него.
  2. Аккумулятор необходимой емкости. Накапливает постоянный ток, поступающий с панели.
  3. Инвертор - узел, преобразующий постоянный в переменный ток.

Все эти механизмы должны подходить друг к другу. Поэтому необходим подбор совместимых устройств, выдерживающих определенную мощность.

Электрификация дома с помощью солнечных панелей становится все популярнее, и многие задумываются о том, чтобы сэкономить на этом. К сожалению, пока что производство такой энергии стоит дороже, чем от традиционной электростанции. Но по прогнозам в течение 10 лет ситуация изменится на противоположную, поэтому вложение в собственные панели быстро окупится.

Использование энергии солнца - это альтернатива невосполняемым источникам энергии. Современные технологии позволяют использовать солнечные батареи для уличного освещения, отопления и освещения небольших домов. Сегодня уже не редкость солнечные батареи для дачи, которые позволяют в летний период обеспечить хозяйство электроэнергией.

Солнечные батареи

Устройство, которое представляет собой большое количество фотоэлектрических преобразователей, соединенных в единую систему, и есть солнечная батарея.

Для солнечной батареи важно наличие прямых солнечных лучей, энергия которых преобразуется в электрический ток.

Устанавливаются батареи в тех районах, где солнечные дни составляют большую часть года. Правда, на эффективность работы солнечных батарей влияет еще и географическая широта. Ведь чем дальше от полюса, тем мощнее солнечные лучи. Но даже в средней полосе России зимой солнечные батареи снижают потребление электроэнергии из общих сетей, а летом появляется возможность даже продавать ее излишки.

Солнечные батареи бывают монокристаллические, поликристаллические и тонкопленочные.

Направленные в разные стороны кристаллы в поликристаллических батареях позволяют снизить зависимость от прямых солнечных лучей. Такие батареи сегодня наиболее распространены, их используют для освещения общественных зданий и частных домов. Часто уже встречается и именно поликристаллического типа.

Солнечные батареи для дачи

Еще совсем недавно главным аргументом против установки была их стоимость. Сегодня эту продукцию начинает выпускать отечественная промышленность, цены на нее становятся ниже, выбор - шире, а сервисное обслуживание - доступнее.

Современные технологии вполне способны справиться с освещением участка и обеспечить работу бытовых приборов. Правда, при этом нужна аккумуляторная а еще контроллер заряда и инвертор, который преобразует постоянный ток в переменный.

Сегодня можно приобрести готовый комплект солнечной миниэлектростанции для дачи или небольшого дома с автономностью работы в течение 24 часов. Мощность такой электростанции - 235 Вт при мощности аккумуляторной батареи 2,4 кВт*ч.

Аккумуляторы для солнечных батарей

Аккумуляторные батареи являются важной частью оборудования современной гелиосистемы.

В яркие солнечные дни солнечные батареи вырабатывают значительно больше электрической энергии, чем потребляют электроприборы, а ночью, когда особенно важно освещение, не работают вообще. Значит, необходимо накапливать и хранить электроэнергию для последующего ее использования.

Аккумуляторная и предназначена для равномерного и бесперебойного электроснабжения.

Также аккумуляторные перекрывают пиковые нагрузки, слишком большие для фотомодулей, используют накопленную энергию в темное время суток, компенсируют разницу выработанной и потребленной энергии в пасмурную погоду.

Способы подключения АКБ

Чаще всего одного аккумулятора не хватает для полноценной работы солнечной электростанции, и приходится использовать несколько однотипных батарей. Специалисты считают, что они вообще должны быть из одной партии.

Для повышения общей емкости системы используются три способа соединения (коммутации) АКБ.

При параллельном соединении складываются емкости всех батарей, а общее напряжение равно напряжению в одном устройстве.

Последовательное соединение, напротив, позволяет просуммировать все напряжения, а емкость остается равной емкости одной батареи в схеме.

Самым производительным является комбинированное последовательно-параллельное соединение, при котором суммируются как напряжения, так и емкости.

Правда, при таком соединении АКБ подвержены разбалансировке, то есть суммарное напряжение будет постоянным расчетным, а вот для каждого отдельного аккумулятора его показания будут меняться. Такое явление приводит к тому, что часть батарей недозаряжается, а часть заряжается выше нормы, и ресурс вырабатывается преждевременно.

Поэтому в комплект каждой гелиосистемы обязательно входит контроллер заряда солнечных батарей и перемычки, с помощью которых соединяют средние точки для самовыравнивания напряжения в АКБ.

Особенности аккумуляторных батарей для гелиосистем

Аккумуляторная батарея для солнечной батареи должна удовлетворять целому ряду требований. Она должна выдерживать большое количество циклов заряда/разряда. При этом саморазряд должен быть минимальным, а величина зарядного тока - большой, диапазон рабочих температур - широким.

Сегодня производители уже выпускают специальные аккумуляторные батареи, так называемые солнечные аккумуляторы, которые этим требованиям полностью отвечают.

Комплект солнечных батарей с такими устройствами и контроллером заряда позволяет накапливать энергию и хранить ее с максимальной эффективностью. А сетевой инвертор - преобразовать ее для подключения бытовых приборов и освещения.

Критерии выбора

Выбирать нужно по нескольким параметрам.

Самый важный из них - это емкость. Исходя из необходимого энергопотребления рассчитывается расчетный показатель емкости, увеличивается на 35-50%, и уже по нему подбирается одно или несколько устройств для параллельного подключения. АКБ с достаточной емкостью держит энергию до 4 суток.

Длительность разрядки и зарядки. Из двух устройств с одинаковым номиналом емкости предпочтительнее то, для которого требуется меньший интервал времени для зарядки.

Емкость свинцового аккумулятора зависит от массы свинца в нем, поэтому чем больше масса АКБ, тем выше его реальная емкость. При выборе нужно обращать внимание на вес и габариты устройства.

Производители задают для своей продукции диапазон рабочих температур и периодичность обслуживания, на эти показатели тоже следует обращать внимание.

В сопроводительных документах всегда указывается срок использования АКБ, количество разрядочных циклов (чем больше этот показатель при прочих равных условиях, тем лучше) и величина саморазряда в месяц.

При расчете параметров аккумуляторной батареи нужно учитывать потери энергии при ее хранении и преобразовании. Эффективность современных устройств для гелиосистем составляет примерно 85%.

Виды аккумуляторов для солнечных батарей

Привычные автомобильные аккумуляторы не рассчитаны на большое количество циклов и отличаются значительным саморазрядом. Для гелиостанций используются совершенно другие устройства.

1. AGM-аккумуляторы, в конструкции которых между абсорбирующими стекломатами находится в связанном состоянии электролит. Такое устройство может эксплуатироваться в любом положении, при низкой цене и глубине заряда около 80% выдерживают до 500 циклов и отличаются высоким уровнем заряда.

Срок из эксплуатации не так велик - 5 лет, и диапазон рабочих температур ограничен 15-25 °С, но они быстро заряжаются - требуется меньше 8 часов на полное восстановление, могут транспортироваться в заряженном состоянии и эксплуатироваться в помещении с недостаточной вентиляцией.

AGM-аккумуляторы быстро выходят из строя из-за перезаряда, но недозаряд переносят вполне удовлетворительно.

2. Гелевая батарея для солнечной батареи тоже может работать в любом положении. Желеобразный гелевый электролит удерживается в порах силикагеля, который служит разделителем для пластин. Неоспоримое достоинство такой конструкции - электроды не осыпаются, потому что все свободное пространство заполнено гелем, а значит, исключена возможность короткого замыкания. Кроме того, они выдерживают полную разрядку и значительное число циклов, примерно в полтора раза больше, чем у аналогичных AGM-аккумуляторов. Но и цена их заметно выше.

Несмотря на цену, гелевые аккумуляторы экономичней, не нуждаются в обслуживании, могут в полностью разряженном состоянии без ущерба находиться несколько дней, потери энергии в них незначительны из-за малого саморазряда.

3. OPzS аккумуляторы, так называемые заливные устройства с жидким электролитом, не требующие обслуживания, разработаны специально для разрядки малыми токами. Они выдерживают очень большое количество глубоких циклов, используются, как правило, в мощных дорогих солнечных системах, и сами стоят достаточно дорого.

Контроллер заряда солнечных батарей

Электронные устройства предназначены для контроля и регулировки уровня заряда на аккумуляторе. Именно они предохраняют АКБ как от полной разрядки, так и от излишней зарядки.

Контроллеры заряда - очень важные элементы солнечных батарей. Они обеспечивают многостадийный заряд АКБ, автоматическое отключение при полном заряде батареи и при минимальном заряде - нагрузок, подключение фотомодулей, когда батарею нужно зарядить, и переподключение нагрузок после зарядки.

Самый дешевый и примитивный вид контроллеров типа On/Off отключает солнечные батареи от АКБ, когда напряжение достигает предельного значения, не давая аккумуляторам зарядиться полностью и тем самым сокращая их ресурс.

PWM-контроллеры, работающие по ШИМ (широтно-импульсная модуляция) - технологии, экономичны и эффективны в районах с высокой активностью солнца. Они прекращают заряд, позволяя аккумулятору при этом полностью зарядиться. Устанавливаются такие устройства в маломощных, до 2 кВт, системах с аккумулятором малой емкости.

МРРТ-контроллеры управляют максимальными энергетическими пиками. Они наиболее эффективны в гелиосистемах, но и значительно дороже устройств других моделей.

Производители аккумуляторов для солнечных батарей

На российском рынке не так много производителей этого вида продукции.

Компания CSB Battery Co., Ltd (Тайвань) предлагает свинцово-кислотные АКБ, изготовленные по со сроком службы до 10 лет, рассчитанные на напряжение 12 В, емкостью от 26 до 100 А*ч по цене от 2,6 до 8,2 тыс. рублей.

Примерно такие же аккумуляторы выпускает Shandong Sacred Sun Power Sources Co., Ltd (Китай).

HAZE Battery Company Ltd (Великобритания) поставляет гелевые АКБ со сроком службы до 12 лет, рабочим напряжение 12 В, емкостью от 15 до 230 А*ч и диапазоном температур от -20 до +50 °С по ценам от 7 до 28 тыс. рублей.

SSKGroup (Россия-Бельгия) выпускает надежные гелевые аккумуляторные батареи для солнечных батарей с пламегасителем со сроком службы 15 лет, емкостью от 100 до 180 А*ч по ценам от 11 до 19 тыс.рублей.

Производители солнечных батарей

Основными производителями солнечных батарей долгое время были Япония, Германия, США и Китай. Российские солнечные батареи собираются из материалов, произведенных в этих странах. Самые популярные отечественные солнечные батареи с доступной ценой изготавливаются из поликристаллического кремния, произведенного в Германии и США.

Сегодня российские производители не только производят солнечные модули, но и разрабатывают новые, как, например, «Квант» в Москве.

Краснодарская компания «Солнечный ветер» производит не только модули, но и готовые домашние гелиостанции. Проектирует готовые гелиосистемы и «СоларИннТех» из Зеленограда.

На отечественном рынке все больше оборудования для гелиосистем, включая готовые типовые проекты. Но при некоторых инженерных навыках и усидчивости можно самостоятельно рассчитать систему для конкретных условий эксплуатации и подобрать необходимое оборудование: солнечные батареи, аккумуляторы, контроллеры разных производителей в широком ценовом диапазоне. При этом можно сэкономить на некоторых составляющих, собрав их самостоятельно из подручных материалов, например, контроллер.

Вопрос выбора солнечных батарей для частного дома довольно непростой. Чтобы определить, какое оборудование Вам необходимо, ответить себе на несколько вопросов:

1. Тип панелей

Фото панелей трёх типов

Есть ли ограничение по площади?

Если да – лучше выбрать солнечные панели из монокристаллического кремния. Этот тип панелей обладает наиболее высоким КПД. Такие батареи могут занимать меньше места при одной и той же мощности, что и поликремниевые панели. Солнечную батарею из монокристаллического кремния легко узнать - она состоит из псевдоквадратов черного цвета. Если ограничения по площади нет, берите солнечные батареи из поликристаллического кремния – они дешевле и немного лучше работают в пасмурную работу благодаря тому, что солнечные элементы имеют разную ориентацию кристаллов кремния. Внешний вид солнечной батареи из поликристаллического кремния - ровные квадраты синеватого цвета с разными оттенками. Если же у Вас особые условия для размещения (например, изогнутая крыша или крыша из поликарбоната), то можно обратить внимание на гибкие солнечные панели из аморфного кремния. Они клеятся на любую поверхность и не требуют дополнительных металлоконструкций. К тому же, эти батареи очень хорошо работают с рассеянным светом. Поэтому, если солнечные дни в Вашем регионе - редкость, можно присмотреться именно к этим панелям. Еще одним вариантом можно считать солнечные батареи из микроморфного кремния. Это новое поколение аморфных солнечных батарей, работающих как в видимой, так и в инфракрасной части спектра. Практика показала, что такие панели дают большую суммарную годовую выработку по сравнению с классическими. Кроме того, такие панели менее требовательны к углу наклона и ориентации по сторонам света. А еще они дешевле, потому что в производстве используется меньше кремния.

Сравним стоимость солнечных батарей для дома и дачи. Мы приводим цены в долларах, поскольку даже российские панели производятся из импортного сырья.

  • Самые дешевые - панели из аморфного или микроморфного кремния. Их цена 0,7-0,9 доллара за Вт.
  • На втором месте расположились поликристаллические солнечные панели с ценой 0.9 - 1 доллара за Вт.
  • Ну и самыми дорогими являются модули из монокристаллического кремния. Их цена 1,1 - 1,3 долларов за 1 Вт мощности.

2. Мощность панелей.

Чтобы определиться с мощностью солнечных панелей, нужно определить среднее потребление энергии в Вашем доме (например, по счетам за электроэнергию), а потом решить, какой процент от этого количества Вы хотите компенсировать при помощи альтернативных источников энергии. Допустим, в месяц Вы потребляете 300 кВт*ч электроэнергии. Это примерно 10 кВт*ч в день и 3600 кВт*ч. Для Крыма можно считать, что солнечные батареи, мощностью 1 кВт вырабатывают в среднем 1300 кВт*ч в год. (около 110 кВт*ч в месяц). Если делается расчет для лета, считается, что панель отдает свою номинальную мощность 6 часов в день (солнечная батарея на 250 Вт выработает 250-6 = 1500 Вт*ч в сутки, при условии, что стоит солнечная погода). Тогда, для полной компенсации Вам необходимо установить 3 кВт панелей (12 панелей по 250 Вт, 1,65 м.кв. каждая). Если установить сразу 12 панелей нет возможности, можно поставить половину, а потом добавить. Оборудование при этом менять не нужно!

3. Тип инвертора

Есть ли сеть 220 В?

Если нет и не будет, тогда выбирайте автономный инвертор. В такой системе солнечные панели будут заряжать аккумуляторы, и одновременно энергия будет расходоваться на различных нагрузках. Рекомендуется также запастись генератором, который сможет зарядить АКБ, если выдастся особо пасмурная неделя и солнечной энергии будет недостаточно. Если сеть есть, то возникает следующий вопрос: нужно ли резервирование электроснабжения, или Вы хотите просто экономить? Если стоит цель просто экономить – достаточно поставить сетевой инвертор. Для него не нужны аккумуляторы. Энергия, вырабатываемая солнечными батареями, преобразуется в 220 В и сразу расходуется потребителями в доме. Несколько интереснее система, которая еще и запасает энергию. В ней используется гибридный инвертор. Основная его особенность – совместная работа сети и солнечных батарей. При этом можно выбрать один из двух приоритетов для основного источника энергии. Если выбрать сеть – тогда инвертор будет брать не более разрешенной мощности от сети, а если не будет хватать – добирать необходимое количество энергии от альтернативных источников энергии и аккумуляторов. Если же поставить приоритет солнечных батарей – тогда инвертор будет брать максимум энергии от них, а если не будет хватать, добирать немного из сети.

4. Мощность инвертора.

Мощность сетевого инвертора подбирается равной или немного большей, чем мощность массива панелей. Для гибридного и автономного расчет немного сложнее. Чтобы узнать, какой мощности инвертор нужен в Вашей системе, нужно посчитать суммарную мощность электроприборов, которые могут быть одновременно включены в Вашем доме. Допустим, у Вас дома есть такие электроприборы:

  • 10 лампочек (экономок) по 20 Вт = 200 Вт,
  • Холодильник класса А+, 300 Вт,
  • Насос, 500 Вт,
  • LCD телевизор 32", 70 Вт,
  • Зарядное устройство мобильного телефона, 5 Вт,
  • Ноутбук, 60 Вт,
  • Пылесос, 1500 Вт,
  • Микроволновка, 2000 Вт,
  • Электрочайник, 1800 Вт,
  • Кондиционер, 1500 Вт.

В сумме получим 7935 Вт. Дополнительно нужно взять запас минимум в 20% и получим 9500 Вт. В линейке инверторов МАП Энергия ближайшая модель – 12 кВт Однако если не включать одновременно пылесос, микроволновку и электрочайник, то максимальная суммарная мощность будет уже 4600 Вт + 20% = 5500 Вт – можно брать инвертор вдвое меньшей мощности – 6 кВт.

5. Тип контроллера заряда

Тут нам на выбор всего 2 типа: ШИМ и МРРТ. Разница между ними в том, что МРРТ контроллер снимает с солнечных панелей до 20% больше мощности по сравнению с ШИМ контроллером. При этом его стоимость в 2-3 раза выше. Чтобы помочь себе сделать выбор, сделайте простой расчет. Если Вы поставили себе на дом солнечные батареи мощностью 1 кВт, то МРРТ контроллер может снять с них все 1000 Вт, в то время как ШИМ «освоит» всего 800 Вт. Чтобы он догнал по мощности МРРТ контроллер, нужно добавить еще одну панель на 200-250 Вт. Разумеется, разрыв между контроллерами в 20% держится не 100% времени. Однако, солнечные батареи эксплуатируются не один год, и разница в 20% за 20 лет может набежать довольно большая. Что Вам выгоднее – добавить батарей или доплатить за более совершенный контроллер – решать Вам. Из опыта могу сказать, что при мощности панелей более 1 кВт уже выгоднее ставить МРРТ контроллер.

6. Мощность контроллера заряда Мощность контроллера заряда нужно выбирать по его паспортным данным (там указано, какую мощность он может прокачать через себя в АКБ). Эта мощность должна быть больше мощности массива батареи, установленных у Вас дома (на даче). Также желательно (для ШИМ контроллеров), чтобы класс напряжения батареи соответствовал напряжению на аккумуляторах. Тогда будет меньше потерь на преобразовании напряжения внутри контроллера. Для МРРТ контроллеров такого ограничения нет. У них наоборот, лучше набрать большое напряжение. Тогда даже в самую пасмурную погоду контроллер сможет сохранить работоспособность и снимать мощность с батареи.

7. Тип аккумуляторов Среди всех типов аккумуляторов для систем на солнечных батареях самыми доступными являются свинцово-кислотные. Из них можно выбрать между герметизированными (AGM, GEL) и обслуживаемыми (тяговые, OPzV). Первые есть смысл ставить, когда планируется использование АКБ в буферном режиме (редкие глубокие разряды в моменты отключения питания, неглубокие разряды в процессе работы (добавление мощности)). Еще одним их преимуществом является их герметичность – можно устанавливать в любом помещении, нет особых требований к вентиляции. Обслуживаемые АКБ надо устанавливать в помещении, где есть вентилляция, поскольку в процессе работы из таких аккумуляторов может выделяться водород. Однако, такие АКБ имеют очень большой ресурс - от 1500 циклов 100% разряда. Поэтому их целесообразно ставить в таких системах, где планируется постоянная циклическая работа от АКБ (автономные системы без сети 220В). Можно еще ставить автомобильные стартерные АКБ, но они плохо переносят разряд небольшими токами и имеют большой саморазряд. Поэтому срок их службы в системах на солнечных батареях очень невелик.

8. Емкость аккумуляторов Про емкость можно сказать: чем больше, тем лучше. Однако, рассчитать минимально необходимое количество АКБ можно. Для этого нужно определить сколько и каких электроприборов должны проработать в случае отключения электроэнергии и умножить это количество энергии на желаемое время автономной работы. Например, лампы (3 по 20 Вт*ч), ТВ (70 Вт*ч), ноутбук (60 Вт*ч), холодильник А+ (40 Вт*ч в час) должны проработать 6 часов. Суммарное потребление в час составит: 60+70+60+40 = 230 Вт. На 6 часов нужно будет 230*6 = 1380 Вт*ч (В*А*ч) Тогда ескость АКБ будет 1380 В*А*ч / 12 В = 115 А*ч. Чтобы не допустить 100% разряда и увеличить срок жизни АКБ, лучше вдвое увеличить емкость и взять АКБ на 200 А*ч. Такой аккумулятор сможет запасти в себе 2400 Вт*ч "солнечной" энергии.

Также Вы можете позвонить нам и задать любой вопрос нашим инженерам. Мы работаем с понедельника по пятницу с 9 до 18 часов без перерыва.

Эту статью про солнечные батареи для дома написал Егор Моисеев