Реакция цепи на дельта функцию. Импульсная характеристика цепи

Интеграл Дюамеля.

Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости или (и) переходную функцию по напряжению , можно найти реакцию цепи на воздействие произвольной формы. В основе метода – метода расчета с помощью интеграла Дюамеля – лежит принцип наложения.

При использовании интеграла Дюамеля для разделения переменной, по которой производится интегрирование, и переменной, определяющей момент времени, в который определяется ток в цепи, первую принято обозначать как , а вторую - как t.

Пусть в момент времени к цепи с нулевыми начальными условиями (пассивному двухполюснику ПД на рис. 1) подключается источник с напряжением произвольной формы. Для нахождения тока в цепи заменим исходную кривую ступенчатой (см. рис. 2), после чего с учетом, что цепь линейна, просуммируем токи от начального скачка напряжения и всех ступенек напряжения до момента t, вступающих в действие с запаздыванием по времени.

В момент времени t составляющая общего тока, определяемая начальным скачком напряжения , равна .

В момент времени имеет место скачок напряжения , который с учетом временного интервала от начала скачка до интересующего момента времени t обусловит составляющую тока .

Полный ток в момент времени t равен, очевидно, сумме всех составляющих тока от отдельных скачков напряжения с учетом , т.е.

Заменяя конечный интервал приращения времени на бесконечно малый, т.е. переходя от суммы к интегралу, запишем

. (1)

Соотношение (1) называется интегралом Дюамеля.

Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости будет входить переходная функция по напряжению.


Последовательность расчета с использованием
интеграла Дюамеля

В качестве примера использования интеграла Дюамеля определим ток в цепи рис. 3, рассчитанный в предыдущей лекции с использованием формулы включения.

Исходные данные для расчета: , , .

  1. Переходная проводимость

.


18. Передаточная функция .

Отношение оператора воздействия к собственному оператору называют передаточной функцией или передаточной функцией в операторной форме.

Звено, описываемое уравнением или уравнениями в символической или операторной форме записи можно охарактеризовать двумя передаточными функциями: передаточной функцией по входной величине u; и передаточной функцией по входной величине f.

и

Используя передаточные функции, уравнение записывают в виде . Это уравнение представляет собой условную более компактную запись форму записи исходного уравнения.

Наряду с передаточной функцией в операторной форме широко используют передаточную функцию в форме изображений Лапласа.

Передаточные функции в форме изображений Лапласа и операторной форме с точностью до обозначений совпадают. Передаточную функцию в форме, изображения Лапласа можно получить из передаточной функции в операторной форме, если в последней сделать подстановку p=s. В общем случае это следует из того, что дифференцированию оригинала - символическому умножению оригинала на p - при нулевых начальных условиях соответствует умножение изображения на комплексное число s.

Сходство между передаточными функциями в форме изображения Лапласа и в операторной форме чисто внешнее, и оно имеет место только в случае стационарных звеньев (систем), т.е. только при нулевых начальных условиях.

Рассмотрим простую RLC (последовательно) цепь, её передаточная функция W(p)=U ВЫХ /U ВХ


Интеграл Фурье.

Функция f (x ), определенная на всей числовой оси называется периодической , если существует такое число, что при любом значении х выполняется равенство . Число Т называется периодом функции.

Отметим некоторые с в о й с т в а этой функции:

1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т .

2) Если функция f (x ) период Т , то функция f (ax )имеет период .

3) Если f (x )- периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство .

Тригонометрический ряд. Ряд Фурье

Если f (x ) разлагается на отрезке в равномерно сходящийся тригонометрический ряд:(1)

То это разложение единственное и коэффициенты определяются по формулам:

где n =1,2, . . .

Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье .

Комплексная форма ряда Фурье

Выражение называется комплексной формой ряда Фурье функции f (x ), если определяется равенством

, где

Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:

(n =1,2, . . .)

Интегралом Фурье функции f(x) называется интеграл вида:

, где .


Частотные функции.

Если подать на вход системы с передаточной функцией W(p) гармонический сигнал

то после завершения переходного процесса на выходе установится гармонические колебания

с той же частотой , но иными амплитудой и фазой, зависящими от частоты возмущающего воздействия. По ним можно судить о динамических свойствах системы. Зависимости, связывающие амплитуду и фазу выходного сигнала с частотой входного сигнала, называются частотными характеристиками (ЧХ). Анализ ЧХ системы с целью исследования ее динамических свойств называется частотным анализом .

Подставим выражения для u(t) и y(t) в уравнение динамики

(aоp n + a 1 pn - 1 + a 2 p n - 2 + ... + a n)y = (bоp m + b 1 p m-1 + ... + b m)u.

Учтем, что

pnu = pnU m ejwt = U m (jw)nejwt = (jw)nu.

Аналогичные соотношения можно записать и для левой части уравнения. Получим:

По аналогии с передаточной функцией можно записать:

W(j ), равная отношению выходного сигнала к входному при изменении входного сигнала по гармоническому закону, называется частотной передаточной функцией . Легко заметить, что она может быть получена путем простой замены p на j в выражении W(p).

W(j ) есть комплексная функция, поэтому:

где P() - вещественная ЧХ (ВЧХ) ; Q() - мнимая ЧХ (МЧХ) ; А() - амплитудная ЧХ (АЧХ) : () - фазовая ЧХ (ФЧХ) . АЧХ дает отношение амплитуд выходного и входного сигналов, ФЧХ - сдвиг по фазе выходной величины относительно входной:

;

Если W(j ) изобразить вектором на комплексной плоскости, то при изменении от 0 до + его конец будет вычерчивать кривую, называемую годографом вектора W(j ), или амплитудно - фазовую частотную характеристику (АФЧХ) (рис.48).

Ветвь АФЧХ при изменении от - до 0 можно получить зеркальным отображением данной кривой относительно вещественной оси.

В ТАУ широко используются логарифмические частотные характеристики (ЛЧХ) (рис.49): логарифмическая амплитудная ЧХ (ЛАЧХ) L() и логарифмическая фазовая ЧХ (ЛФЧХ) ().

Они получаются путем логарифмирования передаточной функции:

ЛАЧХ получают из первого слагаемого, которое из соображений масштабирования умножается на 20, и используют не натуральный логарифм, а десятичный, то есть L() = 20lgA(). Величина L() откладывается по оси ординат в децибелах .

Изменение уровня сигнала на 10 дб соответствует изменению его мощности в 10 раз. Так как мощность гармонического сигнала Р пропорциональна квадрату его амплитуды А, то изменению сигнала в 10 раз соответствует изменение его уровня на 20дб,так как

lg(P 2 /P 1) = lg(A 2 2 /A 1 2) = 20lg(A 2 /A 1).

По оси абсцисс откладывается частота w в логарифмическом масштабе. То есть единичным промежуткам по оси абсцисс соответствует изменение w в 10 раз. Такой интервал называется декадой . Так как lg(0) = - , то ось ординат проводят произвольно.

ЛФЧХ, получаемая из второго слагаемого, отличается от ФЧХ только масштабом по оси . Величина () откладывается по оси ординат в градусах или радианах. Для элементарных звеньев она не выходит за пределы: - + .

ЧХ являются исчерпывающими характеристиками системы. Зная ЧХ системы можно восстановить ее передаточную функцию и определить параметры.


Обратные связи.

Принято считать, что звено охвачено обратной связью, если его выходной сигнал через какое-либо другое звено подается на вход. При этом, если сигнал обратной связи вычитается из входного воздействия (), то обратную связь называют отрицательной. Если сигнал обратной связи складывается с входным воздействием (), то обратную связь называют положительной.

Передаточная функция замкнутой цепи с отрицательной обратной связью - звена, охваченного отрицательной обратной связью,- равна передаточной функции прямой цепи , деленной на единицу плюс передаточная функция разомкнутой цепи

Передаточная функция замкнутой цепи с положительной обратной связью равна передаточной функции прямой цепи, деленной на единицу минус передаточная функция разомкнутой цепи


22. 23. Четырёхполюсники .

При анализе электрических цепей в задачах исследования взаимосвязи между переменными (токами, напряжениями, мощностями и т.п.) двух каких-то ветвей схемы широко используется теория четырехполюсников.

Четырехполюсник – это часть схемы произвольной конфигурации, имеющая две пары зажимов (отсюда и произошло его название), обычно называемые входными и выходными.

Примерами четырыхполюсника являются трансформатор, усилитель, потенциометр, линия электропередачи и другие электротехнические устройства, у которых можно выделить две пары полюсов.

В общем случае четырехполюсники можно разделить на активные, в структуру которых входят источники энергии, и пассивные, ветви которых не содержат источников энергии.

Для записи уравнений четырехполюсника выделим в произвольной схеме ветвь с единственным источником энергии и любую другую ветвь с некоторым сопротивлением (см. рис. 1,а).

В соответствии с принципом компенсации заменим исходное сопротивление источником с напряжением (см. рис. 1,б). Тогда на основании метода наложения для цепи на рис. 1,б можно записать

Уравнения (3) и (4) представляют собой основные уравнения четырехполюсника; их также называют уравнениями четырехполюсника в А-форме (см. табл. 1). Вообще говоря, существует шесть форм записи уравнений пассивного четырехполюсника. Действительно, четырехполюсник характеризуется двумя напряжениями и и двумя токами и . Любые две величины можно выразить через остальные. Так как число сочетаний из четырех по два равно шести, то и возможно шесть форм записи уравнений пассивного четырехполюсника, которые приведены в табл. 1. Положительные направления токов для различных форм записи уравнений приведены на рис. 2. Отметим, что выбор той или иной формы уравнений определяется областью и типом решаемой задачи.

Таблица 1. Формы записи уравнений пассивного четырехполюсника

Форма Уравнения Связь с коэффициентами основных уравнений
А-форма ; ;
Y-форма ; ; ; ; ; ;
Z-форма ; ; ; ; ; ;
Н-форма ; ; ; ; ; ;
G-форма ; ; ; ; ; ;
B-форма ; . ; ; ; .

Характеристическое сопротивление и коэффициент
распространения симметричного четырехполюсника

В электросвязи широко используется режим работы симметричного четырехполюсника, при котором его входное сопротивление равно нагрузочному, т.е.

.

Это сопротивление обозначают как и называют характеристическим сопротивлением симметричного четырехполюсника, а режим работы четырехполюсника, для которого справедливо

,

Импульсная (весовая) характеристика или импульсная функция цепи – это ее обобщенная характеристика, являющаяся временной функцией, численно равная реакции цепи на единичное импульсное воздействие на ее входе при нулевых начальных условиях (рис. 13.14); другими словами, это отклик цепи, свободной от начального запаса энергии на дельта-функцию Дирана
на ее входе.

Функцию
можно определить, рассчитав переходную
или передаточную
функцию цепи.

Расчет функции
с использованием переходной функции цепи. Пусть при входном воздействии
реакцией линейной электрической цепи является
. Тогда в силу линейности цепи при входном воздействии, равном производной
, реакция цепи будет равна производной
.

Как отмечалось, при
, реакция цепи
, а если
, то реакция цепи будет
, т.е. импульсная функция

Согласно свойству выборки
произведение
. Таким образом, импульсная функция цепи

. (13.8)

Если
, то импульсная функция имеет вид

. (13.9)

Следовательно, размерность импульсной характеристики равна размерности переходной характеристики, поделенной на время.

Расчет функции
с использованием передаточной функции цепи. Согласно выражению (13.6), при воздействии на вход функции
, откликом функции будет переходная функция
вида:

.

С другой стороны, известно, что изображение производной функции по времени
, при
, равно произведению
.

Откуда
,

или
, (13.10)

т.е. импульсная характеристика
цепи равна обратному преобразованию Лапласа ее передаточной
функции.

Пример. Найдем импульсную функцию цепи, схемы замещения которой представлены на рис. 13.12, а ; 13.13.

Решение

Переходная и передаточная функции этой цепи били получены ранее:

Тогда, согласно выражению (13.8)

где
.


График импульсной характеристики
цепи представлен на рис. 13.15.

Выводы

Импульсная характеристика
введена по тем же двум причинам, что и переходная характеристика
.

1. Единичное импульсное воздействие
– скачкообразное и потому довольно тяжелое для любой системы или цепи внешнее воздействие. Следовательно, важно знать реакцию системы или цепи именно при таком воздействии, т.е. импульсную характеристику
.

2. При помощи некоторого видоизменения интеграла Дюамеля можно, зная
вычислить реакцию системы или цепи на любое внешнее возмущение (см. далее пп. 13.4, 13.5).

4. Интеграл наложения (дюамеля).

Пусть произвольный пассивный двухполюсник (рис. 13.16, а ) подключается к источнику непрерывно изменяющегося с момента
напряжения(рис. 13.16,б ).


Требуется найти ток (или напряжение) в любой ветви двухполюсника после замыкания ключа.

Задачу решим в два этапа. Сначала искомую величину найдем при включении двухполюсника на единичный скачок напряжения, который задается единичной ступенчатой функцией
.

Известно, что реакцией цепи на единичный скачок является переходная характеристика (функция)
.

Например, для
– цепи переходная функция по току
(см. п.2.1), для
– цепи переходная функция по напряжению
.

На втором этапе непрерывно изменяющееся напряжение
заменим ступенчатой функцией с элементарными прямоугольными скачками
(см. рис. 13.16б ). Тогда процесс изменения напряжения можно представить как включение при
постоянного напряжения
, а затем как включение элементарных постоянных напряжений
, смещенных относительно друг друга на интервалы времени
и имеющих знак плюс для возрастающей и минус для падающей ветви заданной кривой напряжения.

Составляющая искомого тока в момент от постоянного напряжения
равна:

.

Составляющая искомого тока от элементарного скачка напряжения
, включаемого в момент времениравна:

.

Здесь аргументом переходной функции является время
, поскольку элементарный скачок напряжения
начинает действовать на времяпозднее замыкания ключа или, иначе говоря, поскольку промежуток времени между моментомначала действия этого скачка и моментом времениравен
.

Элементарный скачок напряжения

,

где
– масштабный коэффициент.

Поэтому искомая составляющая тока

Элементарные скачки напряжения включаются на интервале времени от
до момента, для которого определяется искомый ток. Поэтому, суммируя составляющие тока от всех скачков, переходя к пределу при
, и учитывая составляющую тока от начального скачка напряжения
, получаем:

Последняя формула для определения тока при непрерывном изменении приложенного напряжения

(13.11)

называется интегралом наложения (суперпозиции) или интегралом Дюамеля (первой формой записи этого интеграла).

Аналогично решается задача при подключении цепи и источнику тока. Согласно этому интегралу реакция цепи, в общем виде,
в некоторый моментпосле начала воздействия
определяется всей той частью воздействия, которая имела место до момента времени.

Заменой переменных и интегрированием по частям можно получить другие формы записи интеграла Дюамеля, эквивалентные выражению (13.11):

Выбор формы записи интеграла Дюамеля определяется удобством расчета. Например, в случае, если
выражается экспоненциальной функцией, удобной оказывается формула (13.13) или (13.14), что обуславливается простотой дифференцирования экспоненциальной функции.

При
или
удобно применять форму записи, в которой слагаемое перед интегралом обращается в нуль.

Произвольное воздействие
может быть представлено также в виде суммы последовательно включаемых импульсов, как это изображено на рис. 13.17.


При бесконечно малой длительности импульсов
получим формулы интеграла Дюамеля, аналогичные (13.13) и (13.14).

Эти же формулы можно получить из соотношений (13.13) и (13.14), заменив а них производную функцию
импульсной функцией
.

Вывод.

Таким образом, на основе формул интеграла Дюамеля (13.11) – (13.16) и временных характеристик цепи
и
могут быть определены временные функции откликов цепи
на произвольные воздействия
.

Импульс является функцией без какой-либо поддержки времени. С дифференциальными уравнениями используется для получения естественного отклика системы. Естественным ее ответом является реакция на начальное состояние. Форсированный отклик системы - это ответ на вход, пренебрегая ее первичным формированием.

Поскольку импульсная функция не имеет какой-либо поддержки времени, можно описать любое начальное состояние, возникающее из соответствующей взвешенной величины, которая равна массе тела, произведенной на скорость. Любая произвольная входная переменная может быть описана как сумма взвешенных импульсов. В результате, для линейной системы описывается как сумма «естественных» ответов на состояния, представленные рассматриваемыми величинами. Это то, что объясняет интеграл.

Когда вычисляется импульсная характеристика системы, по существу, производится естественный отклик. Если исследуется сумма или интеграл свертки, в основном решается этот вход в ряд состояний, а затем изначально сформированный ответ на эти состояния. Практически для импульсной функции можно привести пример удара в боксе, который длится очень мало, и после этого не будет следующего. Математически он присутствует только в начальной точке реалистической системы, имеющей высокую (бесконечную) амплитуду в этом пункте, а затем постоянно гаснет.

Импульсная функция определяется следующим образом: F(X)=∞∞ x=0=00, где ответ представляет собой характеристику системы. Рассматриваемая функция на самом деле является областью прямоугольного импульса при x=0, ширина которого считается равной нулю. При x=0 высоты h и его ширины 1/h это фактическое начало. Теперь, если ширина становится незначительной, то есть почти стремится к нулю, это делает соответствующую высоту h величины, стремящейся к бесконечности. Это определяет функцию как бесконечно высокую.

Ответ конструкции

Импульсная характеристика следующая: всякий раз, когда системе (блоку) или процессору присваивается входной сигнал, он изменяет или обрабатывает его, чтобы дать желаемое выходное предупреждение в зависимости от функции передачи. Отклик системы помогает определить основные положения, конструкцию и реакцию для любого звука. Дельта-функция является обобщенной, которая может быть определена как предел класса указанных последовательностей. Если принимать импульсного сигнала, то разумеется, что оно является спектром постоянного тока в частотной области. Это означает, что все гармоники (в диапазоне от частоты до +бесконечности) способствуют рассматриваемому сигналу. Спектр частотной характеристики указывает, что эта система обеспечивает такой порядок усиления или ослабления этой частоты или подавляет эти колеблющиеся составляющие. Фазовый говорит о сдвиге, предоставляемом для разных гармоник частоты.

Таким образом, импульсные характеристики сигнала указывают на то, что он содержит в себе весь диапазон частот, поэтому используется для тестирования системы. Потому что, если применять какой-либо другой метод оповещения, то у него не будет всех необходимых сконструированных деталей, следовательно, реакция останется неизвестной.

Реакция устройств на внешние факторы

При обработке оповещения импульсная характеристика представляет собой ее выход, когда он представлен кратким входным сигналом, называемым импульсом. В более общем плане является реакцией любой динамической системы в ответ на некоторые внешние изменения. В обоих случаях импульсная характеристика описывает функцию времени (или, возможно, как некоторой другой независимой переменной, которая параметризирует динамическое поведение). Она имеет бесконечную амплитуду только при t=0 и нулевую всюду, и, как следует из названия, ее импульс i, e действует в течение короткого промежутка.

При применении любая система имеет функцию передачи от входа к выходу, которая описывает ее как фильтр, влияющий на фазу и указанную выше величину в частотном диапазоне. Эта частотная характеристика с использованием импульсных методов, измеренная или рассчитанная в цифровом виде. Во всех случаях динамическая система и ее характеристика могут быть реальными физическими объектами или математическими уравнениями, описывающими такие элементы.

Математическое описание импульсов

Поскольку рассматриваемая функция содержит все частоты, критерии и описание определяют отклик линейной временной инвариантной конструкции для всех величин. Математически как описывается импульс, зависит от того, смоделирована ли система дискретным или непрерывным временем. Его можно моделировать как дельта-функцию Дирака для систем непрерывного времени или как величину Кронекера для конструкции с прерывным действием. Первая представляет собой предельный случай импульса, который был очень коротким по времени, сохраняя свою площадь или интеграл (тем самым давая бесконечно высокий пик). Хотя это невозможно в любой реальной системе, это полезная идеализация. В теории анализа Фурье такой импульс содержит равные части всех возможных частот возбуждения, что делает его удобным тестовым зондом.

Любая система в большом классе, известная как линейная, инвариантная по времени (LTI), полностью описывается импульсной характеристикой. То есть для любого входа выход можно рассчитать в терминах ввода и непосредственной концепции рассматриваемой величины. Импульсное описание линейного преобразования представляет собой образ дельта-функции Дирака при преобразовании, аналогичный фундаментальному решению дифференциального оператора с частными производными.

Особенности импульсных конструкций

Обычно проще анализировать системы, используя передаточные импульсные характеристики, а не ответы. Рассматриваемая величина представляет собой преобразование Лапласа. Усовершенствование ученым выходного сигнала системы может быть определено умножением передаточной функции на это действие ввода в комплексной плоскости, также известной как частотная область. Обратное преобразование Лапласа этого результата даст выход во временной области.

Для определения выхода непосредственно во временной области требуется свертка входа с импульсной характеристикой. Когда передаточная функция и преобразование Лапласа ввода известны. Математическая операция, применяющаяся на двух элементах и реализующая третий, может быть более сложной. Некоторые предпочитают альтернативу - умножение двух функций в частотной области.

Реальное применение импульсной характеристики

В практических системах невозможно создать идеальный импульс для ввода данных для тестирования. Поэтому короткий сигнал иногда используется в качестве приближения величины. При условии, что импульс достаточно короткий, по сравнению с откликом, результат будет близок к истинному, теоретическому. Однако во многих системах вхождение с очень коротким сильным импульсом может привести конструкцию в нелинейный режим. Поэтому вместо этого она управляется псевдослучайной последовательностью. Таким образом, импульсная переходная характеристика рассчитывается из входных и выходных сигналов. Отклик, рассматриваемый как функция Грина, можно рассматривать как «влияние» - как точка входа влияет на выход.

Характеристики импульсных устройств

Колонки являются приложением, которое демонстрирует саму идею (была разработка тестирования импульсного отклика в 1970-х годах). Громкоговорители страдают от неточности фазы, дефекта, в отличие от других измеренных свойств, таких как частотная характеристика. Этот недоработанный критерий вызван (слегка) задержанными колебаниями/октавами, которые в основном являются результатом пассивных кросс-передач (особенно фильтров более высокого порядка). Но также вызваны резонансом, внутренним объемом или вибрированием панелей корпуса. Отклик - конечная импульсная характеристика. Его измерение обеспечило инструмент для использования в уменьшении резонансов за счет применения улучшенных материалов для конусов и корпусов, а также изменения кроссовера динамиков. Необходимость ограничить амплитуду для поддержания линейности системы привела к использованию входов, таких как псевдослучайные последовательности максимальной длины, и к помощи компьютерной обработки для получения остальных сведений и данных.

Электронное изменение

Анализ импульсного отклика является основным аспектом радиолокации, ультразвуковой визуализации и многих областей цифровой обработки сигналов. Интересным примером могут быть широкополосные интернет-соединения. DSL-услуги используют методы адаптивного выравнивания, чтобы помочь компенсировать искажения и помехи сигнала, введенные медными телефонными линиями, используемыми для доставки услуги. В их основе лежат устаревшие цепи, импульсная характеристика которых оставляет желать лучшего. На смену пришли модернизированные покрытия для использования Интернета, телевидения и других устройств. Эти усовершенствованные конструкции способны улучшать качество, особенно с учетом того, что современный мир - это сплошное интернет-соединение.

Системы контроля

В теории управления импульсная характеристика представляет собой отклик системы на вход дельта Дирака. Это полезно при анализе динамических конструкций. Преобразование Лапласа дельта-функции равно единице. Поэтому импульсная характеристика эквивалентна обратному преобразованию Лапласа передаточной функции системы и фильтру.

Акустические и звуковые приложения

Здесь импульсные ответы позволяют записывать звуковые характеристики местоположения, например, концертного зала. Доступны различные пакеты, содержащие оповещения от конкретных мест, от небольших комнат до крупных концертных залов. Эти импульсные отклики могут затем использоваться в приложениях реверберации свертки, чтобы позволить акустическим характеристикам конкретного местоположения применяться к целевому звуку. То есть по факту происходит анализ, разделение различных оповещений и акустики через фильтр. Импульсная характеристика в данном случае способна дать возможность выбора пользователю.

Финансовая составляющая

В современном макроэкономическом моделировании функции импульсного ответа используются для описания того, как она реагирует со временем на экзогенные величины, которые научные исследователи обычно называют потрясениями. И часто имитируются в контексте векторной авторегрессии. Импульсы, которые часто считаются экзогенными, с макроэкономической точки зрения включают изменения в государственных расходах, ставках налогов и других параметрах финансовой политики, изменения денежной базы или других параметров капитала и кредитной политики, перемены производительности или других технологических параметров; преобразование в предпочтениях, такие как степень нетерпения. Функции импульсного отклика описывают реакцию эндогенных макроэкономических переменных, таких как выход, потребление, инвестиции и занятость во время шока и в последующие моменты времени.

Конкретнее об импульсе

По существу дела, ток и импульсная характеристика взаимосвязаны. Потому что каждый сигнал может быть смоделирован как серия. Это происходит ввиду наличия определенных переменных и электричества или генератора. Если система является как линейной, так и временной, реакция прибора на каждый из откликов может быть вычислена с использованием рефлексов рассматриваемой величины.

Расчет отклика цепи во многих случаях может быть упрощен, если входной сигнал представить суммой элементарных воздействий в виде прямоугольных импульсов малой длительности. Для этого сначала рассмотрим связь между функциями и, изображенными на рис.5.8а,6, которые можно записать в виде:

Вторая функция является единичным импульсом, который рассмотрен нами в п.2.4. Как видно, функция является производной от функции, т.е. . Осуществим в этих функциях предельный переход при. При этом функция перейдет в единичную функцию, а функция в функцию. Тогда в силу равенства следует, что единичный импульс, или - функция является производной единичной функции.

Для линейной цепи отсюда заключаем, что ее отклик на единичный импульс, называемый импульсной характеристикой цепи, является производной переходной характеристики цепи, т.е. или

Размерность импульсной характеристики равна размерности переходной характеристики, деленной на время.

Нахождение импульсной характеристики в большинстве случаев проще, чем нахождение переходной характеристики. Действительно, как показано в п. 2.4, спектральная функция единичного импульса, а поэтому для импульсной характеристики с помощью интеграла Фурье получаем выражение

Из этого выражения следует, что спектральная функция характеристики равна комплексному коэффициенту передачи цепи, т.е. или, пользуясь прямым преобразованием Фурье, запишем:

To есть импульсная характеристика цепи так же, как и переходная характеристика, определяется через коэффициент передачи, но для импульсной характеристики в большинстве случаев подынтегральное выражение в интеграле Фурье оказывается проще.

В качестве примера применим соотношение (5.14) для определения спектра импульсной характеристики интегрирующей цепи, переходная характеристика которой. Для импульсной характеристики получаем

Пользуясь здесь выражением (5.14), необходимо учесть, что переходная характеристика при тождественно равна нулю, и поэтому нижний предел в интеграле выражения (5.14) будет нуль. Тогда спектральная функция импульсной характеристики равна

т.е. получили коэффициент передачи интегрирующей цепи, соответствующий ранее полученному выражению (3.16).

Зная импульсную характеристику, можно найти отклик цепи на воздействие сигнала любой формы, либо предварительно найдя по соотношению (5.12) переходную характеристику, а затем воспользовавшись одним из выражений интеграла Дюамеля, либо непосредственно через функцию. В последнем случае входную функцию, т.е. воздействующий сигнал необходимо представить в виде суммы импульсов, как показано на рис. 5.9.

Такое представление функции будет точнее, если, т.е. если она представлена суммой бесконечно большого числа бесконечно малых по длительности импульсов, являющихся здесь элементарными воздействиями. Если бы элементарным воздействием был единичный импульс, площадь которого равна единице, то откликом цепи на такой импульс, появляющийся в момент времени, была бы импульсная характеристика. В рассматриваемом случае элементарный импульс имеет величину, равную мгновенному значению функции в момент и длительность, равную, т.е. его площадь равна. Тогда откликом на элементарное воздействие будет величина. Отклик цепи на воздействие, заданное функцией, будет суммой откликов на все элементарные воздействия, временное положение которых соответствует интервалу от 0 до, т.е.

Это выражение, являющееся еще одним видом записи интеграла Дюамеля, называется также сверткой функций. Оно по виду совпадает с оригиналом свертки изображений двух функций в формуле (4.21).

Импульсную характеристику цепи можно получить с помощью эксперимента, наблюдая отклик цепи (выходное напряжение) на электронном осциллографе. На вход цепи необходимо подать импульс весьма малой длительности. Для примера рассмотрим импульсную характеристику последовательного колебательного контура, считая, что выходное напряжение снимается с емкости С. Выше в п.1.6 мы рассмотрели переходный процесс при включении постоянного напряжения на такой контур. Если величина поданного напряжения равна единице, то напряжение на емкости, являющееся переходной характеристикой цепи равно, согласно (1.33),

Эта переходная характеристика представлена на рис.5.10а. Тогда импульсная характеристика контура

Считая добротность контура большой, полагаем и тогда первым членом можно пренебречь:

Эта характеристика представлена на рис.5.10б. Она соответствует осциллограмме свободных колебаний в контуре, рассмотренных нами в п.1.5.

Таким образом, для того чтобы экспериментально наблюдать импульсную характеристику контура, необходимо на вход контура подать импульс малой длительности, т.е. (как было пояснено в п.2.4) чтобы его длительность удовлетворяла условию.

Импульсной характеристикой (весовой функцией) называется реакция системы на единичный бесконечный импульс (дельта-функцию или функцию Дирака) при нулевых начальных условиях. Дельта-функция определяется равенствами

, .

Это обобщенная функция – математический объект, представляющий собой идеальный сигнал, никакое реальное устройство не способно его воспроизвести. Дельта-функцию можно рассматривать как предел прямоугольного импульса единичной площади с центром в точке при стремлении ширины импульса к нулю.

Теперь нам нужно проанализировать пределы этой суммы. Итак, мы должны использовать интегралы для правильного понимания этого типа системы. Для этого нам нужна свертка! Предположим для этой задачи, что \\ больше нуля. Попробуйте выполнить следующие две функции.

,

где – передаточная функция системы, которая является преобразованием Лапласа для. Импульсная характеристика системы с одним интегратором стремится к постоянной величине, равной статическому коэффициенту передачи системы без интегратора. Для системы с двумя интеграторами импульсная характеристика асимптотически стремится к прямой, с тремя интеграторами – к параболе и т.д.

Соответствующим дискретным сигналом является последовательность. Рассмотрим преобразование Фурье непрерывного сигнала. Аппроксимация преобразования Фурье получается из дискретного сигнала методом прямоугольников.

Когда сумма остановлена ​​в конечном ранге, мы находим.

Линейная система с конечной импульсной характеристикой


Эта система называется причинной, поскольку состояние выхода зависит только от предыдущих состояний входа. Дискретный сигнал, определяемый.

Для входного импульса линейная система выводит сигнал.

Следует отметить, что выходной сигнал является результатом свертки входного сигнала импульсной характеристикой.

8. Временной метод анализа переходных процессов в линейных электрических цепях

8.1. Переходные и импульсные характеристики электрических цепей

В основе временного метода лежит понятие переходной и импульсной характеристик цепи. Переходной характеристикой цепи называют реакцию цепи на воздействие в форме единичной функции (7.19). Обозначается переходная характеристика цепи g (t ). Импульсной характеристикой цепи называют реакцию цепи на воздействие единичной импульсной функции (d-функции) (7.21). Обозначается импульсная характеристика h (t ). Причем, g (t ) и h (t ) определяются при нулевых начальных условиях в цепи. В зависимости от типа реакции и типа воздействия (ток или напряжение) переходные и импульсные характеристики могут быть безразмерными величинами, либо имеют размерность А/В или В/А.

Эта система представляет собой фильтр с конечным импульсным откликом.


Который является дискретным преобразованием Фурье импульсной характеристики. Рассмотрим в качестве простого примера фильтр, реализующий среднее арифметическое двух последовательных значений ввода.

Использование понятий переходной и импульсной характеристик цепи позволяет свести расчет реакции цепи от действия непериодического сигнала произвольной формы к определению реакции цепи на простейшее воздействие типа единичной 1(t ) или импульсной функции d(t ), с помощью которых аппроксимируется исходный сигнал. При этом результирующая реакция линейной цепи находится (с использованием принципа наложения) как сумма реакций цепи на элементарные воздействия 1(t ) или d(t ).


Средний фильтр - фильтр нижних частот. Фазовый сдвиг линейно изменяется с частотой. Это подтверждается следующим выражением частотной характеристики . Чтобы имитировать действие этого фильтра на сигнал, рассмотрите следующий непрерывный сигнал и его выборку.

Чтобы получить отфильтрованный дискретный сигнал, достаточно выполнить свертку с импульсной характеристикой. Для линейного фазового фильтра фазовый сдвиг является линейной функцией частоты. Таким образом, частотная характеристика имеет следующий вид.

Все частоты сигнала подвергаются одному и тому же сдвигу τ при прохождении через фильтр. τ - время распространения.

Между переходной g (t ) и импульсной h (t ) характеристиками линейной пассивной цепи существует определенная связь. Ее можно установить, если представить единичную импульсную функцию через предельный переход разности двух единичных функций величины 1/t, сдвинутых друг относительно друга на время t (см. рис. 7.4):

т. е. единичная импульсная функция равна производной единичной функции. Так как рассматриваемая цепь предполагается линейной, то соотношение (8.1) сохраняется и для импульсных и переходных реакций цепи

Форма сигнала не изменяется с помощью полосовой фильтрации. Выделяя термин, содержащий фазу, частотная характеристика записывается в соответствии с выражением. После изменения переменной в сумме выводится выражение коэффициента усиления. Написан частотный отклик. Учитывая предел, получим.


Получен линейный фазовый фильтр с бесконечной импульсной характеристикой. Этот метод эквивалентен применению прямоугольного окна к коэффициентам Фурье.

Коэффициенты Фурье этой функции.

Результат может быть выражен с помощью синусовой кардинальной функции и зависит только от отношения частоты среза к частоте дискретизации.

т. е. импульсная характеристика является производной от переходной характеристики цепи.

Уравнение (8.2) справедливо для случая, когда g (0) = 0 (нулевые начальны е условия для цепи). Еслиже g (0) ¹ 0, то представив g (t ) в виде g (t ) = , где = 0, получим уравнение связи для этого случая:

Для получения частотной характеристики используется следующая функция. Здесь приведен график усиления и фазы фильтра. Можно видеть, что фаза действительно линейна в полосе пропускания, но усиление имеет очень сильные волнистости. В аттенюированной полосе имеются разрывы π фазы. Разумеется, различия в отношении желаемой передаточной функции обусловлены усечением импульсной характеристики.

Попробуем усечение окном Ханна. Волны в полосе пропускания и в аттенюированной полосе значительно уменьшены. Линейность фазы в полосе пропускания всегда обеспечивается. Если задержка τ должна оставаться фиксированной, частота дискретизации должна быть увеличена одновременно. Отбирается сигнал с шумом.

Для нахождения переходных и импульсных характеристик цепи можно использовать как классический, так и операторный методы. Сущность классического метода состоит в определении временной реакции цепи (в форме напряжения или тока в отдельных ветвях цепи) на воздействие единичной 1(t ) или импульсной d(t ) функции. Обычно классическим методом удобно определять переходную характеристику g (t ), а импульсную характеристику h (t ) находить с помощью уравнений связи (8.2), (8.3) или операторным методом .

Пример. Найдем классическим методом переходную характеристику по напряжению для цепи, изображенной на рис. 8.1. Численно g u (t ) для данной цепи совпадает с напряжением на емкости при подключении ее в момент t = 0 к источнику напряжения U 1 = l В:

Закон изменения напряжения u C (t ) определяется уравнением (6.27), где необходимо положить U = l В:

При нахождении характеристик g (t ) и h (t ) операторным методом пользуются изображениями функций 1(t ), d(t ) и методикой расчета переходных процессов, изложенных в гл. 7.

Пример. Определим операторным методом переходную характеристику g u (t ) -цепи (см. рис. 8.1). Для данной цепи в соответствии с законом Ома в операторной форме (7.35) можем записать:

Окончательно получаем

Отсюда по теореме разложения (7.31) находим

т. е. то же значение, что и полученное классическим методом.

Следует отметить, что величина I (р ) в уравнении (8.4) численно равна изображению переходной проводимости. Аналогичное изображение импульсной характеристики численно равно операторной проводимости цепи

Например, для -цепи (см. рис. 8.1) имеем:

Применив к Y (p ) теорему разложения (7.30), получим:

Следует отметить, что формула (8.5) определяет свободную составляющую реакции цепи при единичном импульсном воздействии. В общем случае в реакции цепи, кроме экспоненциальных составляющих свободного режима при t > 0 присутствует импульсное слагаемое, отображающее воздействие при t = 0 единичного импульса. Действительно, если учесть, что для -контура (см. рис. 8.1) переходная характеристика по току при U = 1(t ) согласно (6.28) будет

то после дифференцирования (8.6) согласно (8.2) получаем импульсную характеристику -цепи h i (t ) в виде

т. е. реакция h i (t ) содержит два слагаемых - импульсное и экспоненциальное.

Физический смысл первого слагаемого в (8.7) означает, что при t = 0 в результате воздействия на цепь импульсного напряжения d(t ) зарядный ток мгновенно достигает бесконечно большого значения, при этом за время от 0 – до 0 + элементу емкости передается конечный заряд и она скачком заряжается до напряжения I /RC . Второе слагаемое определяет свободный процесс в цепи при t > 0 и обусловлено разрядом конденсатора через короткозамкнутый вход (так как при t > 0 d(t ) = 0, что равносильно КЗ входа) с постоянной времени t = RC . Из этого следует, что при d(t )-импульсном воздействии на -цепь нарушается непрерывность заряда на емкости (второй закон коммутации). Аналогично нарушается и условие непрерывности тока в индуктивности (первый закон коммутации), если к цепи, содержащей элемент индуктивности воздействовать напряжением в виде d(t ).

В табл. 8.1 сведены значения переходной и импульсных характеристик по току и напряжению для некоторых цепей первого и второго порядка.

8.2. Интеграл Дюамеля

Интеграл Дюамеля может быть получен, если аппроксимировать приложенное воздействие f 1 (t ) с помощью единичных функций, сдвинутых относительно друг друга на время Dt (рис. 8.2).

Реакция цепи на каждое ступенчатое воздействие определится как

Результирующая реакция цепи на систему ступенчатых воздействий найдется, исходя из принципа наложения:


где п - число аппроксимирующих участков, на которые разбит интервал 0 ... t . Домножив и разделив выражение, стоящее под знаком суммы, на Dt и перейдя к пределу с учетом того получим одну из форм интеграла Дюамеля:


Уравнение (8.8) отражает реакцию цепи на заданное воздействие, поскольку аппроксимирующая функция стремится к исходной.

Вторая форма интеграла Дюамеля может быть получена с помощью теоремы свертки (см.): , б), затем определяется классическим или операторным методом реакция цепи при включении рассматриваемой ветви к активному двухполюснику (рис. 8.4, в ). Результирующая реакция находится как сумма реакций: .

8.3. Интеграл наложения

При нахождении реакции цепи с помощью интеграла наложения используется импульсная характеристика цепи h (t ). Для получения общего выражения интеграла наложения аппроксимируем входной сигнал f 1 (t ) с помощью системы единичных импульсов длительности d t, амплитуды f 1 (t) и площади f 1 (t)d t (рис. 8.5). Выходная реакция цепи на каждый из единичных импульсов

Используя принцип наложения, нетрудно получить суммарную реакцию цепи на систему единичных импульсов:

Интеграл (8.12) носит название интеграла наложения . Между интегралами наложения и Дюамеля существует простая связь, определяемая связью (8.3) между импульсной h (t ) и переходной g (t ) характеристиками цепи. Подставив, например, значение h (t ) из (8.3) в формулу (8.12) с учетом фильтрующего свойства d-функции (7.23), получим интеграл Дюамеля в форме (8.11).

Пример. На вход -цепи (см. рис. 8.1) подается скачок напряжения U 1 . Определить реакцию цепи на выходе с использованием интегралов наложения (8.12) и Дюамеля (8.11).

Импульсная характеристика данной цепи равна (см. табл. 8.1): h u (t ) = = (1/RC)e –t / RC . Тогда, подставляя h u (t – t) = (1/RC)e –( t– t)/ RC в формулу (8.12), получаем:

Аналогично результат получаем при использовании переходной функции данной цепи и интеграла Дюамеля (8.11):

Если начало воздействия не совпадает с началом отсчета времени, то интеграл (8.12) принимает вид

Интегралы наложения (8.12) и (8.13) представляютсобойсвертку входного сигнала с импульсной характеристикой цепи и широко применяются в теории электрических цепей и теории передачи сигналов. Ее физический смысл заключается в том, что вход ной сигнал f 1 (t) как бы взвешивается с помощью функции h (t- t): чем медленнее убывает со временем h (t ), тем большее влияние на выходной сигнал оказывает более удаленные от момента наблюдения значение входного воздействия.


На рис. 8.6, а показан сигнал f 1 (t) и импульсная характеристика h (t- t), являющаяся зеркальным отображением h (t), а на рис. 8.6, б приведена свертка сигнала f 1 (t) с функцией h (t- t) (заштрихованная часть), численно равная реакции цепи в момент t .

Из рис. 8.6 видно, что отклик на выходе цепи не может быть короче суммарной длительности сигнала t 1 и импульсной характеристики t h . Таким образом, для того чтобы выходной сигнал не искажался импульсная характеристика цепи должна стремиться к d-функции.

Очевидно также, что в физически реализуемой цепи реакция не может возникнуть раньше воздействия. А это означает, что импульсная характеристика физически реализуемой цепи должна удовлетворять условию

Для физически реализуемой устойчивой цепи кроме того должно выполняться условие абсолютной интегрируемости импульсной характеристики:

Если входное воздействие имеет сложную форму или задается графически, то для вычисления реакции цепи вместо интеграла свертки (8.12) применяют графоаналитические способы.

Вопросы и задания для самопроверки

1. Дать определения переходной и импульсной характеристик цепи.

2. Указать связь между импульсной и переходной характеристиками.

3. Как определить переходную и импульсную характеристику цепи?

4. В чем отличие переходных характеристик, объяснить их физический смысл.

5. Как определить, какую из четырех разновидностей переходных или импульсных характеристик необходимо применить в каждом конкретном случае при расчете реакции цепи?

6. В чем заключается сущность расчета переходных процессов с использованием g (t ) и h (t )?

7. Как определить реакцию цепи, если воздействие имеет сложную форму?

8. Каким условиям должна удовлетворять цепь при использовании интеграла Дюамеля?

9. Приведите другую форму интеграла наложения, отличную от (8.12).

10. Расчет реакции цепи с использованием интегралов Дюамеля и наложения приводит к одинаковым результатам или разным?

11. Определить переходную проводимость цепи, образованной сопротивлением и индуктивностью, включенными последовательно.

12. Определить цепи, образованной сопротивлением и емкостью, включенными последовательно.

Ответ: .

13. Получить третью форму интеграла Дюамеля (8.10) из уравнения свертки (8.10).