Амплитудно-частотная характеристика, полоса пропускания и затухание. Телевизионный канал (полоса радиочастот) Полоса пропускания сигнала

Типы характеристик и способы их определения.

Характеристики линий связи.

Линия связи искажает передаваемые данные т.к. ее физические параметры отличаются от идеальных. Линия связи представляет собой некую распределенную комбинацию активного сопротивления, индуктивной и емкостной нагрузки.

К основным характеристикам линий связи относятся:

· амплитудно-частотная характеристика;

· полоса пропускания;

· затухание;

· помехоустойчивость;

· перекрестные наводки на ближнем конце линии;

· пропускная способность;

· достоверность передачи данных;

· удельная стоимость.

В первую очередь разработчика вычислительной сети интересуют пропускная способность и достоверность передачи данных, поскольку эти характеристики прямо влияют на производительность и надежность создаваемой сети. Пропускная спо­собность и достоверность - это характеристики как линии связи, так и способа передачи данных. Поэтому если способ передачи (протокол) уже определен, то известны и эти характеристики. Например, пропускная способность цифровой линии всегда известна, так как на ней определен протокол физического уровня, который задает битовую скорость передачи данных - 64 Кбит/с, 2 Мбит/с и т. п.

Однако нельзя говорить о пропускной способности линии связи, до того как для нее определен протокол физического уровня.

Амплитудно-частотная характеристика показывает, как затухает ам­плитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Вместо амплитуды в этой ха­рактеристике часто используют также такой параметр сигнала, как его мощность.

На практике вместо АЧХ применяются другие, упрощенные харак­теристики - полоса пропускания и затухание.

Полоса пропускания - это непрерывный диапазон частот, для которого отношение амплитуды выходного сигнала ко входному превышает некоторый заранее заданный предел, обычно 0,5. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по линии связи.

Затухание определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по линии сигнала определенной частоты. Таким образом, затухание представляет собой одну точку из амплитудно-частотной характеристики линии. Часто при эксплуатации линии заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по ли­нии сигналов.

Затухание А обычно измеряется в децибелах и вычисляется по следующей формуле:


А = 10 log (Рвых/Pвх),

Так как мощность выходного сигнала кабеля без промежуточных усилителей всегда меньше, чем мощность входного сигнала, затухание кабеля всегда является отрицательной величиной.

Например, кабель на витой паре категории 5 характеризуется затуханием не ниже -23,6 дБ для частоты 100 МГц при длине кабеля 100 м. Частота 100 МГц выбрана потому, что кабель этой категории предназначен для высокоскоростной передачи данных, сигналы которых имеют значимые гармоники с частотой примерно 100 МГц.

Кабель категории 3 предназначен для низкоскоростной передачи данных, поэтому для него определяется затухание на частоте 10 МГц (не ниже -11,5 дБ). Часто опе­рируют с абсолютными значениями затухания, без указания знака.

Абсолютный уровень мощности, например уровень мощности передатчика, так­же измеряется в децибелах. При этом в качестве базового значения мощности сигнала, относительно которого измеряется текущая мощность, принимается зна­чение в 1 мВт. Таким образом, уровень мощности р вычисляется по следующей формуле:

р = 10 log (Р/1мВт) [дБм],

где Р - мощность сигнала в милливаттах, а дБм (dBm) - это единица измерения уровня мощности (децибел на 1 мВт).

Таким образом, амплитудно-частотная характеристика, полоса пропускания и затухание являются универсальными характеристиками, и их знание позволяет сделать вывод о том, как через линию связи будут передаваться сигналы любой формы.

Полоса пропускания зависит от типа линии и ее протяженности. На слайде по­казаны полосы пропускания линий связи различных типов, а также наиболее часто используемые в технике связи частотные диапазоны.

Очень часто, общаясь с ИТ-специалистами, в медленной работе корпоративных приложений обвиняют сетевой департамент или узкие каналы связи. Самое простое решение всех проблем — больше пропускной способности (шире канал) и меньше левых приложений в канале (меньше конкурентов за полосу) и тогда все будет летать. Конечно, надо обращать внимание и на чистоту каналов связи и их использование, но это не единственные параметры. Самым простым решением для оценки состояния каналов являются Flow технологии и корреляция данных между производительностью ключевого приложения и данных с NetFlow (jFlow, Sflow и т. д.).

В сетях передачи данных, задержки — это жизненный факт. Понимая их природу, можно уменьшить отрицательный эффект, повысив тем самым качество связи. Сетевые задержки определены стандартами ITU и должны укладываться в определенные пределы:

Последовательный принцип передачи пакетов по каналу связи вносит задержки. Задержка при передаче информации от одного пользователя другому состоят из нескольких составляющих и их можно разделить на два больших класса — фиксированные и переменные.

К переменным задержкам относятся в основном задержка в очередях на каждом из узлов сети: маршрутизатор, коммутатор, сетевой адаптер. К фиксированным - задержка пакетирования, последовательная задержка, задержка кодека (для видео или аудио). Средой передачи может служить медная пара, волоконно-оптический кабель или эфир. При этом величина задержки зависит от тактовой частоты и, в гораздо меньшей степени, от скорости света в среде передачи.

В документации Cisco есть вот такая таблица, которая позволяет оценить последовательную задержку в зависимости от длины пакетов и ширины канала связи:

Размер кадра (байты)

Скорость передачи по каналу (Кбит/с)

Для передачи кадра длиной 1518 байт (максимальная длина для Ethernet) по каналу 64-кбит/сек последовательная задержка достигает 185 мс. Если по тому же каналу передавать пакеты длиной 64 байт, задержка составит всего 8 мс, т. е. чем короче пакет, тем быстрее он достигнет приемной стороны. Поэтому для передачи голоса используются короткие UDP пакеты, которые позволяют минимизировать величину задержки, а разработчики оборудования для передачи данных, напротив, стремятся к увеличению длины кадров для снижения объема служебного трафика. Для расчёта последовательной задержки можно воспользоваться формулой:

Последовательная задержка = ((кол-во байт для отправки или получения) x (8 бит))/ (самую медленную скорость в канале)

Например, последовательная задержка для отправки 100 Кбайт и получения 1 Мбайт по каналу 2 Мбит/сек составит:

Передача: (100,000 * 8) / 2,048,000 = 390 мсек

Прием: (1,024,000 *8) / 2,048,000 = 4000 мсек

Конечно, последовательная задержка это один из компонентов и на каждый из потоков будет дополнительно оказывать влияние задержка в каналах связи, джиттер и т.д. Данная формула покажет идеальную картину, когда за канал связи не борются другие пользователи или приложения. Это можно увидеть на диаграмме, которая показывает реальную скорость канала связи при передаче 200 Кбайтного файла по протоколу FTP и каналу 10 Мбит/сек.

Мы видим, что скорость в процессе передачи не постоянна. Так как сеть - среда разделяемая, то пакеты по мере передачи по сети попадают в очереди, теряются, активируется алгоритм контроля доступа к среде, который мешает одному пользователю захватить весь канал связи. Все это оказывает влияние на скорость передачи и как следствие на скорость работы приложения.

Как увеличить скорость работы приложений, не изменяя ширину полосы пропускания канала связи?

Естественно, самый простой выход - увеличить ширину канала связи, но иногда это не возможно или стоит очень дорого для корпоративных клиентов. В таком случае логично уменьшить объем данных, передаваемых в канале связи. Уменьшить объем можно несколькими способами. Сжатие данных, использование тонких клиентов, кеширование, использование решений для оптимизации трафика - это позволяет иногда добиться сокращения трафика от 2 до 5 раз (разные приложения ужимаются по-разному).

Также можно, понять структуру трафика и как реально используется канал связи с помощью Flow технологий и далее путем приоритезации трафика сократить возможные потери пакетов и рост очередей в активном оборудовании.

Часто при описании электронных сетей связи используется термин «полоса пропускания». Это одна из ключевых характеристик подобных систем. На первый взгляд может показаться, что человеку, работа которого никак не связана с линиями связи, нет необходимости разбираться, что такое полоса пропускания канала. На самом же деле все немного не так. У многих есть домашний персональный компьютер, подключенный к И каждый знает, что иногда работа со «всемирной паутиной» без видимых причин замедляется. Одна из причин этого заключается в том, что в тот самый момент полоса пропускания канала провайдера оказывается перегруженной. Результат - явное замедление и возможные сбои в работе. Прежде чем дать определение понятию «полоса пропускания», воспользуемся примером, позволяющим любому человеку понять, о чем идет речь.

Представим себе автомобильную дорогу в небольшом провинциальном городке и в густонаселенном мегаполисе. В первом случае чаще всего она рассчитана на один или два потока машин, соответственно, ширина небольшая. А вот в крупных городах даже четырехполосным движением никого не удивишь. За одно и то же время количество машин, проехавших одинаковое расстояние по этим двум дорогам, существенно отличается. Оно зависит от двух характеристик - скорости движения и количества полос. В данном примере дорога - это а машины представляют собой биты информации. В свою очередь каждая полоса - это линия связи.

Другими словами, полоса пропускания косвенно указывает, какое количество данных может быть передано по за единицу времени. Чем этот параметр выше, тем комфортнее работа через такое соединение.

Если со скоростью передачи все очевидно (она возрастает с уменьшением задержек передачи сигнала), то термин «ширина полосы пропускания» немного более сложен. Как известно, чтобы сигнал мог передать информацию, он определенным образом преобразуется. Применительно к электронике это может быть или смешанная модуляция. Однако одна из особенностей передачи заключается в том, что по одному и тому же проводнику одновременно могут быть переданы сразу несколько импульсов с разной частотой (в пределах общей полосы, пока искажения находятся в допустимых рамках). Эта возможность позволяет увеличить общую производительность работы линии связи без изменения задержек. Яркий пример сосуществования частот - это одновременный разговор нескольких человек с различным тембром. Хотя говорят все, но слова каждого вполне различимы.

Почему же при работе с сетью иногда наблюдается замедление? Все объясняется довольно просто:

Чем выше задержки, тем меньше скорость. Любые помехи прохождению сигнала (программные или физические) снижают быстродействие;

Часто включает в себя дополнительные биты, выполняющие дублирующие функции - так называемая «избыточность». Это необходимо для обеспечения работоспособности в условиях наличия помех на линии;

Достигнут физический предел проводящей среды, когда все допустимые уже используются и при новых порциях данных они помещаются в очередь на отправку.

Для решения подобных проблем провайдеры применяют несколько различных подходов. Это может быть виртуализация, увеличивающая «ширину», но вносящая дополнительные задержки; увеличение канала за счет «лишних» проводящих сред и пр.

В цифровой технике иногда используется термин «бод». Фактически он означает количество бит данных, переданных за единицу времени. Во времена медленных линий связи (dial-up) 1 бод соответствовал 1 биту за 1 секунду. В дальнейшем, с ростом скоростей, «бод» перестал быть универсальным. Он мог означать 1, 2, 3 и более бит в секунду, что требовало отдельного указания, поэтому в настоящее время используется другая система, понятная каждому.

Полоса пропускания

О полосе пропускания в цифровой технике см. Скорость передачи информации

Полоса пропускания (прозрачности) - диапазон частот , в пределах которого амплитудно-частотная характеристика (АЧХ) акустического, радиотехнического, оптического или механического устройства достаточно равномерна для того, чтобы обеспечить передачу сигнала без существенного искажения его формы. Иногда, вместо термина "полоса пропускания", используют термин "эффективно передаваемая полоса частот (ЭППЧ)". В ЭППЧ сосредоточена основная энергия сигнала (не менее 90%). Этот диапазон частот устанавливается для каждого сигнала экспериментально в соответствии с требованиями качества.

Основные параметры полосы пропускания

Основные параметры, которые характеризуют полосу пропускания частот - это ширина полосы пропускания и неравномерность АЧХ в пределах полосы.

Ширина полосы

Ширина полосы пропускания - полоса частот, в пределах которой неравномерность частотной характеристики не превышает заданной.

Ширина полосы обычно определяется как разность верхней и нижней граничных частот участка АЧХ, на котором амплитуда колебаний (или для мощности) от максимальной. Этот уровень приблизительно соответствует −3 дБ .

Ширина полосы пропускания выражается в единицах частоты (например, в Гц).

Расширение полосы пропускания позволяет передать большее количество информации.

Неравномерность АЧХ

Неравномерность АЧХ характеризует степень её отклонения от прямой, параллельной оси частот.

Ослабление неравномерности АЧХ в полосе улучшает воспроизведение формы передаваемого сигнала.

Различают:

  • Абсолютную полосу пропускания: 2Δω = Sa
  • Относительную полосу пропускания: 2Δω/ωo = So

Конкретные примеры

В теории антенн полоса пропускания - диапазон частот, при которых антенна работает эффективно, обычно окрестность центральной (резонансной) частоты. Зависит от типа антенны, ее геометрии. На практике полоса пропускания обычно определяется по уровню КСВ (коэффициента стоячей волны). КСВ МЕТР

Поскольку даже самый лучший монохроматичный лазер всё равно излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и тем самым порождает искажения сигналов. При оценке этого пользуются термином полоса пропускания. Измеряется полоса пропускания (в данном случае) в МГц/км.

Из определения полосы пропускания видно, что дисперсия накладывает ограничение на дальность передачи и на верхнюю частоту передаваемых сигналов.

Требования к П. п. различных устройств определяются их назначением (например, для телефонной связи требуется П. п. 300-3400 гц, для высококачественного воспроизведения музыкальных произведений 30-16000 гц, а для телевизионного вещания - шириной до 8 Мгц) .

См. также

Примечания


Wikimedia Foundation . 2010 .

  • Святое озеро
  • Сочинение (синтаксис)

Смотреть что такое "Полоса пропускания" в других словарях:

    полоса пропускания Энциклопедический словарь

    полоса пропускания - 1. Ширина частотного спектра сигнала между верхней и нижней частотами среза 2. Интервал частот, заключенный между двумя частотами среза, в пределах которого модуль коэффициента передачи системы составляет не менее 0,707 от максимального значения… … Справочник технического переводчика

    ПОЛОСА ПРОПУСКАНИЯ - диапазон частот, в пределах которого зависимость амплитуды колебаний на выходе акустического, радиотехнического или оптического устройства от их частоты достаточно слаба, чтобы обеспечить передачу сигнала без существенного искажения. Ширину… … Большой Энциклопедический словарь

    ПОЛОСА ПРОПУСКАНИЯ - область частот, в к рой колебания, проходящие через радиотехн., акустич., оптич. и др. устройства, изменяют свою амплитуду и др. параметры в установленных границах. Для электрич. цепей в пределах П. п. сопротивление цепи (в зависимости от её… … Физическая энциклопедия

    полоса пропускания - Bandwidth Полоса пропускания Область частот, в которой амплитудно частотная характеристика акустического, радиотехнического или оптического устройства достаточно равномерна для того, чтобы обеспечить передачу сигнала без существенного… … Толковый англо-русский словарь по нанотехнологии. - М.

    полоса пропускания - praleidžiamoji juosta statusas T sritis automatika atitikmenys: angl. pass band; pass range; passband; transmission band vok. Durchlaßband, n; Durchlaßbereich, m rus. полоса пропускания, f pranc. bande de transmission, f; bande passante, f; passe … Automatikos terminų žodynas

    полоса пропускания - praleidžiamoji juosta statusas T sritis fizika atitikmenys: angl. pass band; transmission band vok. Durchlaßband, n; Durchlaßbereich, n rus. полоса пропускания, f pranc. bande passante, f … Fizikos terminų žodynas

    Полоса пропускания - частот, диапазон частот, в пределах которого Амплитудно частотная характеристика (АЧХ) акустического, радиотехнического или оптического устройства достаточно равномерна для того, чтобы обеспечить передачу сигнала без существенного… … Большая советская энциклопедия

    ПОЛОСА ПРОПУСКАНИЯ - частот (в радиотехнике и электросвязи) интервал частот, в пределах к рого отношение амплитуды колебаний на выходе электрич. цепи (фильтра, усилителя и др.) к амплитуде колебаний на её входе не опускается ниже определённого уровня, обычно 1 3 дБ… … Большой энциклопедический политехнический словарь

    ПОЛОСА ПРОПУСКАНИЯ - диапазон частот, в пределах к рого зависимость амплитуды колебаний на выходе акустич., радиотехн. или оптич. устройства от их частоты достаточно слаба, чтобы обеспечить передачу сигнала без существ, искажения. Ширину П. п. выражают в Гц,… … Естествознание. Энциклопедический словарь

· полоса пропускания;

· затухание;

· помехоустойчивость;

· пропускная способность;

· удельная стоимость.

Полоса пропускания - это непрерывный диапазон частот, для которого отношение амплитуды выходного сигнала ко входному превышает некоторый заранее заданный предел, обычно 0,5. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по линии связи.

Полоса пропускания зависит от типа линии и ее протяженности. На слайде по­казаны полосы пропускания линий связи различных типов, а также наиболее часто используемые в технике связи частотные диапазоны.

Характеристики каналов связи. Затухание

Линия связи искажает передаваемые данные т.к. ее физические параметры отличаются от идеальных. Линия связи представляет собой некую распределенную комбинацию активного сопротивления, индуктивной и емкостной нагрузки.

Типы характеристик и способы их определения.

К основным характеристикам линий связи относятся:

· амплитудно-частотная характеристика;

· полоса пропускания;

· затухание;

· помехоустойчивость;

· перекрестные наводки на ближнем конце линии;

· пропускная способность;

· достоверность передачи данных;

· удельная стоимость.

В первую очередь разработчика вычислительной сети интересуют пропускная способность и достоверность передачи данных, поскольку эти характеристики прямо влияют на производительность и надежность создаваемой сети. Пропускная спо­собность и достоверность - это характеристики как линии связи, так и способа передачи данных. Поэтому если способ передачи (протокол) уже определен, то известны и эти характеристики. Например, пропускная способность цифровой линии всегда известна, так как на ней определен протокол физического уровня, который задает битовую скорость передачи данных - 64 Кбит/с, 2 Мбит/с и т. п.

Однако нельзя говорить о пропускной способности линии связи, до того как для нее определен протокол физического уровня.

Амплитудно-частотная характеристика, полоса пропускания и затухание

Амплитудно-частотная характеристика показывает, как затухает ам­плитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Вместо амплитуды в этой ха­рактеристике часто используют также такой параметр сигнала, как его мощность.

На практике вместо АЧХ применяются другие, упрощенные харак­теристики - полоса пропускания и затухание.

Затухание определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по линии сигнала определенной частоты. Таким образом, затухание представляет собой одну точку из амплитудно-частотной характеристики линии. Часто при эксплуатации линии заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по ли­нии сигналов.

Затухание А обычно измеряется в децибелах и вычисляется по следующей формуле:

А = 10 log (Рвых/Pвх),

Так как мощность выходного сигнала кабеля без промежуточных усилителей всегда меньше, чем мощность входного сигнала, затухание кабеля всегда является отрицательной величиной.

Например, кабель на витой паре категории 5 характеризуется затуханием не ниже -23,6 дБ для частоты 100 МГц при длине кабеля 100 м. Частота 100 МГц выбрана потому, что кабель этой категории предназначен для высокоскоростной передачи данных, сигналы которых имеют значимые гармоники с частотой примерно 100 МГц.

Кабель категории 3 предназначен для низкоскоростной передачи данных, поэтому для него определяется затухание на частоте 10 МГц (не ниже -11,5 дБ). Часто опе­рируют с абсолютными значениями затухания, без указания знака.

Абсолютный уровень мощности, например уровень мощности передатчика, так­же измеряется в децибелах. При этом в качестве базового значения мощности сигнала, относительно которого измеряется текущая мощность, принимается зна­чение в 1 мВт. Таким образом, уровень мощности р вычисляется по следующей формуле:

р = 10 log (Р/1мВт) [дБм],

где Р - мощность сигнала в милливаттах, а дБм (dBm) - это единица измерения уровня мощности (децибел на 1 мВт).

Таким образом, амплитудно-частотная характеристика, полоса пропускания и затухание являются универсальными характеристиками, и их знание позволяет сделать вывод о том, как через линию связи будут передаваться сигналы любой формы.

Характеристики каналов связи. Шумы

Линия связи искажает передаваемые данные т.к. ее физические параметры отличаются от идеальных. Линия связи представляет собой некую распределенную комбинацию активного сопротивления, индуктивной и емкостной нагрузки.

Типы характеристик и способы их определения.

К основным характеристикам линий связи относятся:

· амплитудно-частотная характеристика;

· полоса пропускания;

· затухание;

· помехоустойчивость;

· перекрестные наводки на ближнем конце линии;

· пропускная способность;

· достоверность передачи данных;

· удельная стоимость.

В первую очередь разработчика вычислительной сети интересуют пропускная способность и достоверность передачи данных, поскольку эти характеристики прямо влияют на производительность и надежность создаваемой сети. Пропускная спо­собность и достоверность - это характеристики как линии связи, так и способа передачи данных. Поэтому если способ передачи (протокол) уже определен, то известны и эти характеристики. Например, пропускная способность цифровой линии всегда известна, так как на ней определен протокол физического уровня, который задает битовую скорость передачи данных - 64 Кбит/с, 2 Мбит/с и т. п.

Однако нельзя говорить о пропускной способности линии связи, до того как для нее определен протокол физического уровня.

Шумы

Чем выше частота несущего периодического сигнала, тем больше информации в единицу времени передается по линии и тем выше пропускная способность линии при фиксированном способе физического кодирования. Однако, с другой стороны, с увеличением частоты периодического несущего сигнала увеличивается и ширина спектра этого сигнала. Линия передает этот спектр синусоид с теми искажениями, которые определяются ее полосой пропускания. Это не значит, что сигналы нельзя передавать. Чем больше несоответствие между полосой пропускания линии и шириной спектра передавае­мых информационных сигналов, тем больше сигналы искажаются и тем вероятнее ошибки в распознавании информации принимающей стороной, а значит, скорость передачи информации на самом деле оказывается меньше, чем можно было пред­положить.

Связь между полосой пропускания линии и ее максимально возможной пропуск­ной способностью, вне зависимости от принятого способа физического кодирования, установил Клод Шеннон:

Формула Шеннона:

С = F Iog2 (1 + Рс/Рш),

где С - максимальная пропускная способность линии в битах в секунду,

F - ширина полосы пропускания линии в герцах,

Рс - мощность сигнала,

Рш - мощность шума.

Из этого соотношения видно, что хотя теоретического предела пропускной спо­собности линии с фиксированной полосой пропускания не существует, на практи­ке такой предел имеется. Действительно, повысить пропускную способность линии можно за счет увеличения мощности передатчика или же уменьшения мощности шума (помех) на линии связи. Обе эти составляющие поддаются изменению с большим трудом. Повышение мощности передатчика ведет к значительному уве­личению его габаритов и стоимости. Снижение уровня шума требует применения специальных кабелей с хорошими защитными экранами, что весьма дорого, а так­же снижения шума в передатчике и промежуточной аппаратуре, чего достичь весьма не просто.

К тому же влияние мощностей полезного сигнала и шума на пропуск­ную способность ограничено логарифмической зависимостью, которая растет да­леко не так быстро, как прямо-пропорциональная. Так, при достаточно типичном исходном отношении мощности сигнала к мощности шума в 100 раз повышение мощности передатчика в 2 раза даст только 15 % увеличения пропускной способ­ности линии.

Помехоустойчивость линии определяет ее способность уменьшать уровень помех, создаваемых во внешней среде, на внутренних проводниках. Помехоустойчивость линии зависит от типа используемой физической среды, а также от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми явля­ются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной - волоконно-оптические линии, малочувствительные ко внешнему электромагнит­ному излучению. Обычно для уменьшения помех, появляющихся из-за внешних электромагнитных полей, проводники экранируют и/или скручивают.