Методы и инструментальные средства диагностики периферийного оборудования. Программные средства диагностики сети

Большинство пользователей беззаботно работают на компьютере и не задумываются о том, что в какой-то момент компьютер может выключиться и больше не включиться вовсе. Да и достаточно часто возникает проблема - только что собранный или обновленный компьютер не включается. А еще хуже, если компьютер внезапно перестает работать. В таком случае главное - правильно идентифицировать поломку. Ведь может и ремонт не понадобится.

Отчего и почему?

Для начала стоит разобраться с причинами, которые могут вызвать такое явление. Как известно и пыль и неблагоприятные климатические условия ухудшают состояние компонентов ПК. Соответственно, выход железа из строя может быть вызван окислением контактов, попаданием пыли (и следственно, статического электричества) на микросхемы и разъемы, их перегрев. Перегрев также может быть вызван и плохим охлаждением.

Также все эти ужасы также могут стать следствием скачка напряжения, нестабильностью блока питания, а также неправильного заземления. Первое, что здесь можно порекомендовать - использовать сетевые фильтры, UPS и заземление компьютера. Но помните - лучше вообще не заземлять компьютер, чем заземлять его неправильно. Во-первых, заземлять корпус ПК и модем с телефонной линией надо отдельно. Не стоит заземлять корпус на отопительную батарею, поскольку на тот же стояк ваши соседи могут заземлять, например, холодильник, стиральную машину или перфоратор. В таком случае, эта «земля» уже станет фазой с разностью потенциалов. Нежелательно заземлять несколько устройств в одну «землю» одновременно. Кстати говоря, поэтому не рекомендуется бытовую технику подключать в один сетевой фильтр с компьютером, а вот монитор, принтер и системный блок лучше запитать от одного сетевого фильтра.

К неплохому фейерверку из микросхем может привести и закорачивание какого-либо провода или попаданием питания на земляной контакт. Поэтому всегда стоит следить за качеством подключения кабелей и их состоянием.

Типичные проблемы

Ну а если уж беда случилась, то придется ее диагностировать. Итак, начнем. Для начала приведем полезную статистику, чтобы примерно знать, где может быть собака зарыта.

Если компьютер в состоянии клинической смерти, то, прежде всего, надо сделать вскрытие и постараться найти характерный запах гари и выяснить, откуда он идет. Если его нет, то стоит проверить надежность подключения питания. Если проверка не помогла, то стоит включить ПК и проверить, крутятся ли вентиляторы блока питания (БП), корпуса и кулера процессора (заодно проверьте крепление кулера). Если не крутятся, и винчестер не издает характерного звука раскручивания шпинделя, то вышел из строя блок питания. Наличие напряжения на его выходе можно проверить тестером померив величину напряжения на контактах системной платы в том месте, где жгут проводов питания соединен с БП. Стоит подключить новый БП и проверить целостность остальных компонентов. Для начала их необходимо визуально осмотреть на предмет наличия горелых элементов.

Несмотря на то, что рабочий монитор ломается достаточно редко, стоит проверить, подаются ли на него сигналы с видеоадаптера. Для этого осциллографом на контактах 10 и 13 (земля и синхронизация соответственно) 15-контактного разъема D-Sub видеоадаптера, вставленного в материнскую плату, нужно проверить наличие рабочих сигналов.

Чтобы облегчить задачу поиска неисправного компонента, приведу наиболее часто встречающиеся симптомы поломок различного оборудования. Когда процессор выходит из строя, то чаще всего на его ножках видны следы гари.

В материнских платах наиболее часто встречающаяся поломка - выход из строя дискретных элементов, особенно конденсаторов в VRM (Voltage Regulation Module, представляет собой LC-фильтр). Да и сам этот блок может выгореть. Нередко электролитические конденсаторы попросту вздуваются, что требует их замены. Также часто встречающийся момент - «выбивание» транзисторов в районе северного моста, модулей памяти и VRM. Их можно определить по подгоревшим ножкам и потемнениям в этой области. Встречаются и выходы из строя тактовых генераторов и линий задержки, а также выгорание портов.

Также иногда встречающееся явление - нарушение контакта на плате. Это может быть вызвано помещением платы расширения в слот не до конца, прогибом платы, закорачиванием контактов на обратной стороне платы на корпус, нехваткой длины проводов, идущих от БП к материнской плате.

В винчестерах самое уязвимое место - перегревшийся контроллер и IDE-разъем. Сгоревший контроллер можно определить по потемнениям рядом с местами его крепления. Перегрев микросхемы приводит и к ухудшению контакта между контроллером HDD и гермоблоком. Механические проблемы двигателя винчестера можно определить по сильной вибрации корпуса HDD при вращении дисков. Массовые неполадки были замечены у дисков IBM серии DTLA и Ericsson (70GXP и 60GXP), Maxtor 541DX, Quantum Fireball 3, Fujitsu серии MPG.

В CD-приводах чаще всего выходит из строя оптико-механическая часть. В частности механизм позиционирования лазера и определения диска. Как правило, такая поломка вызывается неисправностью МСУ (микропроцессор системного управления), который вырабатывает управляющие сигналы, а также драйвера двигателя лазерного считывателя, который отвечает за сигнал возбуждения. Для их проверки необходимо промерить выходные сигналы на соответствующих контактах МСУ. Характерным симптомом неисправности МСУ является отсутствие перемещения лазерного считывателя при первоначальном включении питания. У флоппи-дисководов чаще всего встречаются механические поломки связанные с подъемником и прижимом дискеты.

Программно-аппаратная диагностика

Если все вышеперечисленное не помогло определить поломку, то придется перейти к программно-аппаратной диагностике. А для того, чтобы она прошла успешно необходимо точно знать, каков порядок включения устройств ПК.

Итак, рассмотрим порядок загрузки компьютера.

  1. После включения питания БП выполняет самотестирование. Если все выходные напряжения соответствуют требуемым, БП выдает на материнскую плату сигнал Power_Good (P_G) на контакт 8 20-контактного разъема питания ATX. Между включением ПК и подачей сигнала проходит около 0,1-0,5 с.
  2. Микросхема таймера получает сигнал P_G и прекращает генерировать подаваемый на микропроцессор сигнал начальной установки Reset. Если процессор не исправен, то система зависает.
  3. Если CPU жив, то он начинает выполнять код, записанный в ROM BIOS по адресу FFFF0h (адрес программы перезагрузки системы). По этому адресу находится команда безусловного перехода JMP к адресу начала программы загрузки системы через конкретный ROM BIOS (обычно это адрес F0000h).
  4. Начинается выполнение конкретного кода ROM BIOS. BIOS начинает проверку компонентов системы на работоспособность (POST - Power On Self Test). Обнаружив ошибку, система подаст звуковой сигнал, так как видеоадаптер пока еще не инициализирован. Проверяется и инициализируется чипсет, DMA и происходит тест определения объема памяти. Если модули памяти вставлены не до конца или некоторые банки памяти повреждены, то или система зависает или звучат длинные повторяющие сигналы из системного динамика.
  5. Происходит разархивирование образа BIOS в оперативную память для более быстрого доступа к коду BIOS.
  6. Инициализируется контроллер клавиатуры.
  7. BIOS сканирует адреса памяти видеоадаптера, начиная с С0000h и заканчивая C7800h. Если BIOS видеоадаптера найден, то проверяется контрольная сумма (CRC) его кода. Если CRC совпадают, то управление передается Video BIOS, который инициализирует видеоадаптер и выводит на экран информацию о версии Video BIOS. Если контрольная сумма не совпадает, то выводится сообщение «C000 ROM Error». Если Video BIOS не найден, то используется драйвер, записанный в BIOS ROM, который инициализирует видеокарту.
  8. ROM BIOS сканирует пространство памяти начиная с C8000h в поисках BIOS других устройств, таких как сетевые карты и SCSI-адаптеры, и проверяется их контрольная сумма.
  9. BIOS проверяет значение слова по адресу 0472h, чтобы определить, какая загрузка должна быть выполнена - «горячая» или «холодная». Если по этому адресу записано слово 1234h, то процедура POST не выполняется, происходит «горячая» загрузка.
  10. В случае холодной загрузки выполняется POST. Инициализируется процессор, выводится информация о его марке, модели и т.д. Выдается один короткий сигнал.
  11. Тестируется RTC (Real Time Clock).
  12. Определение частоты CPU, проверка типа видеоадаптера (в том числе встроенного).
  13. Тестирование стандартной и расширенной памяти.
  14. Присвоение ресурсов всем ISA-устройствам.
  15. Инициализация IDE-контроллера. Если используется 40-контактный шлейф для подключения ATA/100 HDD, то появится соответствующее сообщение.
  16. Инициализация FDC-контроллера.
  17. ROM BIOS ищет системную дискету или MBR жесткого диска и читает сектор 1 на дорожке 0 стороны 0, копирует этот сектор по адресу 7С00h. Далее происходит проверка этого сектора: если он оканчивается сигнатурой 55AAh, то MBR просматривает таблицу разделов (Partition Table) и ищет активный раздел, а затем пытается загрузиться с него. Если первый сектор оканчивается любой другой сигнатурой, то вызывается прерывание Int 18h и на экран выводится сообщение «DISK BOOT FAILURE, INSERT SYSTEM DISK AND PRESS ENTER» или «Non-system disk or disk error».

В общем-то все. Что касается последнего пункта, то ошибки указанные в нем говорят о неисправности винчестера (программной или аппаратной). Теперь вам остается только выявить, в какой именно момент перестает работать ваш компьютер. Если это происходит до появления сообщений на мониторе, то неисправность можно определить по звуковым сигналам. Наиболее часто встречающиеся звуковые сигналы приведены в таблице.

Стоит заметить, что звуковые сигналы могут отличаться от приведенных выше из-за различия версий BIOS. Если же и звуковые сигналы не помогли определить неисправность, то остается лишь уповать на аппаратную диагностику. Она производится несколькими средствами.

Аппаратная диагностика

Первое средство весьма банально, но вполне действенно. Работу отдельных блоков можно проверить, дотронувшись до них рукой, чтобы проверить их нагрев. После минутного включения должны греться чипсет, процессор, чипы памяти и блоки видеокарты. Если они кажутся теплыми, то этого достаточно, чтобы сделать вывод хотя бы о том, что на эти элементы подается питание. С большой долей вероятности они должны оказаться рабочими.

Второе средство более научно и требует некоторой инженерной подготовки. Заключается оно в измерении потенциалов на различных элементах. Для этого нужен тестер и осциллограф. Желательно иметь карту разводки материнской платы, поскольку она многослойная, и прохождение сигналов не так очевидно. Начать измерения стоит с силовых элементов входных цепей и стабилизирующих и шунтирующих конденсаторов, проверить наличие +3,3 и +5 В в соответствующих местах материнской платы, работу тактовых генераторов. После этого стоит проверить наличие штатных сигналов на выводах сокета процессора. Далее проверить наличие сигналов в слотах и портах. В последнюю очередь стоит заняться логическими элементами (хотя ремонт их часто оказывается делом неразумным). Для этого вам потребуется знание разводки портов и слотов. Эта информация приведена в таблицах.

Третье и последнее средство диагностики - профессиональные аппаратные средства диагностики. К ним относится использование диагностических карт типа ДП-1 и комплекса PC-3000, созданных компанией «РОСК». Диагностическая плата устанавливается в свободный слот материнской платы, и после включения ПК на ее индикаторе отображается код ошибки в шестнадцатеричном виде. Применение такой платы существенно повышает вероятность локализации неисправности. Использование ДП-1 рассчитано на корректную работу процессора, а CPU выходит из строя крайне редко.

На данный момент в России диагностические карты, тестовые ROM BIOS и другие средства диагностики производятся компанией ACE Laboratory.

При аппаратной диагностике следует иметь ввиду, что в большинстве случаев выходит из строя только одно устройство, и проще всего его выявить, заменив на аналогичное, гарантированно работающее.

Что касается блоков питания и периферийных устройств, то диагностика неисправностей в них - тема отдельного разговора, но по поводу мониторов можно дать ряд советов. Достаточно часто из строя выходит промежуточный строчный трансформатор, включаемый между предоконечным и выходным транзистором строчной развертки. Основной его неисправностью, как правило, бывает короткое замыкание витков. Этот трансформатор - часть высоковольтного блока строчной развертки. Это высокое напряжение подается на ЭЛТ. Поэтому часто отсутствие свечения на экране и отсутствие растра указывают на отсутствие высокого напряжения. Как правило, вертикальная полоса на экране также указывает на отказ блока строчной развертки. Проверить наличие высокого напряжение на ЭЛТ можно проведя рукой по поверхности экрана. Если высокое напряжение подается, то вы должны почувствовать некоторую вибрацию или потрескивания статического электричества.

Программная диагностика

Если же ваш компьютер все же включается, но работает нестабильно, зависает при загрузке, «выпадает» в синий экран, то это чаще всего является следствием переразгона, локального перегрева или «глючностью» памяти, а также ошибками работы HDD (к ним относится и «падение» Windows).

Стабильность их работы можно проверить под DOS, загрузившись c системной дискеты или диска. Для этого следует использовать утилиты CheckIT, PC Doctor, Memtest 86, Stress Linux, Norton Diagnostics, The Troubleshooter. Для профессионального тестирования и восстановления HDD следует использовать HDDUtility и MHDD, но они корректно работают только под MS-DOS 6.22. Первое, что требуется сделать с помощью них - проверить SMART-атрибуты состояния HDD. Также для диагностики, проверки и пометки bad-секторов можно использовать Norton Disk Doctor.

Следует помнить, что полноценную проверку железа можно произвести только под Windows, тестируя стабильность работы в burn-in тестах в течение не менее чем 24 часов. Среди таких тестов можно привести CPU Hi-t Professional Edition, CPU Stability Test, Bionic CPU Keeper, CPU Burn, Hot CPU Tester Pro, HD_Speed, DiskSpeed 32, MemTest.

А вообще, как известно, гораздо легче предупредить событие, чем исправить его последствия, поэтому гораздо легче регулярного (хотя бы раз в несколько недель) следить за параметрами выдаваемых блоком питания напряжений, смотреть SMART-параметры HDD (программы Active SMART, SMARTVision, SMART Disk Monitor), изучать температуру процессора, проверять наличие хорошего охлаждения и отсутствие посторонних звуков. Нелишним было бы и смазывание вентиляторов машинным маслом, как минимум раз в полгода.

Программные средства диагностики

Среди программных средств диагностики компьютерных сетей, можно выделить специальные системы управления сетью (Network Management Systems) - централизованные программные системы, которые собирают данные о состоянии узлов и коммуникационных устройств сети, а также данные о трафике, циркулирующем в сети. Эти системы не только осуществляют мониторинг и анализ сети, но и выполняют в автоматическом или полуавтоматическом режиме действия по управлению сетью - включение и отключение портов устройств, изменение параметров мостов адресных таблиц мостов, коммутаторов и маршрутизаторов и т.п. Примерами систем управления могут служить популярные системы HPOpenView, SunNetManager, IBMNetView.

Средства управления системой (System Management) выполняют функции, аналогичные функциям систем управления, но по отношению к коммуникационному оборудованию. Вместе с тем, некоторые функции этих двух видов систем управления могут дублироваться, например, средства управления системой могут выполнять простейший анализ сетевого трафика.

Экспертные системы. Этот вид систем аккумулирует человеческие знания о выявлении причин аномальной работы сетей и возможных способах приведения сети в работоспособное состояние. Экспертные системы часто реализуются в виде отдельных подсистем различных средств мониторинга и анализа сетей: систем управления сетями, анализаторов протоколов, сетевых анализаторов. Простейшим вариантом экспертной системы является контекстно-зависимая help-система. Более сложные экспертные системы представляют собой так называемые базы знаний, обладающие элементами искусственного интеллекта. Примером такой системы является экспертная система, встроенная в систему управления Spectrum компании Cabletron.

Анализаторы протоколов

В ходе проектирования новой или модернизации старой сети часто возникает необходимость в количественном измерении некоторых характеристик сети таких, например, как интенсивности потоков данных по сетевым линиям связи, задержки, возникающие на различных этапах обработки пакетов, времена реакции на запросы того или иного вида, частота возникновения определенных событий и других характеристик.

Для этих целей могут быть использованы разные средства и прежде всего - средства мониторинга в системах управления сетью, которые уже обсуждались ранее. Некоторые измерения на сети могут быть выполнены и встроенными в операционную систему программными измерителями, примером тому служит компонента ОС Windows Performance Monitor. Даже кабельные тестеры в их современном исполнении способны вести захват пакетов и анализ их содержимого .

Но наиболее совершенным средством исследования сети является анализатор протоколов. Процесс анализа протоколов включает захват циркулирующих в сети пакетов, реализующих тот или иной сетевой протокол, и изучение содержимого этих пакетов. Основываясь на результатах анализа, можно осуществлять обоснованное и взвешенное изменение каких-либо компонент сети, оптимизацию ее производительности, поиск и устранение неполадок. Очевидно, что для того, чтобы можно было сделать какие-либо выводы о влиянии некоторого изменения на сеть, необходимо выполнить анализ протоколов и до, и после внесения изменения.

Анализатор протоколов представляет собой либо самостоятельное специализированное устройство, либо персональный компьютер, обычно переносной, класса Нtebook, оснащенный специальной сетевой картой и соответствующим программным обеспечением. Применяемые сетевая карта и программное обеспечение должны соответствовать топологии сети (кольцо, шина, звезда). Анализатор подключается к сети точно также, как и обычный узел. Отличие состоит в том, что анализатор может принимать все пакеты данных, передаваемые по сети, в то время как обычная станция - только адресованные ей. Программное обеспечение анализатора состоит из ядра, поддерживающего работу сетевого адаптера и декодирующего получаемые данные, и дополнительного программного кода, зависящего от типа топологии исследуемой сети. Кроме того, поставляется ряд процедур декодирования, ориентированных на определенный протокол, например, IPX. В состав некоторых анализаторов может входить также экспертная система, которая может выдавать пользователю рекомендации о том, какие эксперименты следует проводить в данной ситуации, что могут означать те или иные результаты измерений, как устранить некоторые виды неисправности сети.

Несмотря на относительное многообразие анализаторов протоколов, представленных на рынке, можно назвать некоторые черты, в той или иной мере присущие всем им:

Пользовательский интерфейс. Большинство анализаторов имеют развитый дружественный интерфейс, базирующийся, как правило, на Windows или Motif. Этот интерфейс позволяет пользователю: выводить результаты анализа интенсивности трафика; получать мгновенную и усредненную статистическую оценку производительности сети; задавать определенные события и критические ситуации для отслеживания их возникновения; производить декодирование протоколов разного уровня и представлять в понятной форме содержимое пакетов.

Буфер захвата. Буферы различных анализаторов отличаются по объему. Буфер может располагаться на устанавливаемой сетевой карте, либо для него может быть отведено место в оперативной памяти одного из компьютеров сети. Если буфер расположен на сетевой карте, то управление им осуществляется аппаратно, и за счет этого скорость ввода повышается. Однако это приводит к удорожанию анализатора. В случае недостаточной производительности процедуры захвата, часть информации будет теряться, и анализ будет невозможен. Размер буфера определяет возможности анализа по более или менее представительным выборкам захватываемых данных. Но каким бы большим ни был буфер захвата, рано или поздно он заполнится. В этом случае либо прекращается захват, либо заполнение начинается с начала буфера .

Фильтры. Фильтры позволяют управлять процессом захвата данных, и, тем самым, позволяют экономить пространство буфера. В зависимости от значения определенных полей пакета, заданных в виде условия фильтрации, пакет либо игнорируется, либо записывается в буфер захвата. Использование фильтров значительно ускоряет и упрощает анализ, так как исключает просмотр ненужных в данный момент пакетов .

Переключатели - это задаваемые оператором некоторые условия начала и прекращения процесса захвата данных из сети. Такими условиями могут быть выполнение ручных команд запуска и остановки процесса захвата, время суток, продолжительность процесса захвата, появление определенных значений в кадрах данных. Переключатели могут использоваться совместно с фильтрами, позволяя более детально и тонко проводить анализ, а также продуктивнее использовать ограниченный объем буфера захвата .

Поиск. Некоторые анализаторы протоколов позволяют автоматизировать просмотр информации, находящейся в буфере, и находить в ней данные по заданным критериям. В то время, как фильтры проверяют входной поток на предмет соответствия условиям фильтрации, функции поиска применяются к уже накопленным в буфере данным.

Методология проведения анализа может быть представлена в виде следующих шести этапов:

1. Захват данных.

2. Просмотр захваченных данных.

3. Анализ данных.

4. Поиск ошибок. (Большинство анализаторов облегчают эту работу, определяя типы ошибок и идентифицируя станцию, от которой пришел пакет с ошибкой.)

5. Исследование производительности. Рассчитывается коэффициент использования пропускной способности сети или среднее время реакции на запрос.

6. Подробное исследование отдельных участков сети. Содержание этого этапа конкретизируется по мере того, как проводится анализ.

Обычно процесс анализа протоколов занимает относительно немного времени - 1-2 рабочих дня.

Большинство современных анализаторов позволяют анализировать сразу несколько протоколов глобальных сетей, таких, как X.25, PPP, SLIP, SDLC/SNA, frame relay, SMDS, ISDN, протоколы мостов/маршрутизаторов (3Com, Cisco, Bay Networks и другие). Такие анализаторы позволяют измерять различные параметры протоколов, анализировать трафик в сети, преобразование между протоколами локальных и глобальных сетей, задержку на маршрутизаторах при этих преобразованиях и т. п. Более совершенные приборы предусматривают возможность моделирования и декодирования протоколов глобальных сетей, "стрессового" тестирования, измерения максимальной пропускной способности, тестирования качества предоставляемых услуг. В целях универсальности почти все анализаторы протоколов глобальных сетей реализуют функции тестирования ЛВС и всех основных интерфейсов. Некоторые приборы способны осуществлять анализ протоколов телефонии. А самые современные модели могут декодировать и представлять в удобном варианте все семь уровней OSI. Появление ATM привело к тому, что производители стали снабжать свои анализаторы средствами тестирования этих сетей. Такие приборы могут проводить полное тестирование сетей АТМ уровня E-1/E-3 с поддержкой мониторинга и моделирования. Очень важное значение имеет набор сервисных функций анализатора. Некоторые из них, например возможность удаленного управления прибором, просто незаменимы .

Таким образом, современные анализаторы протоколов WAN/LAН/ДTM позволяют обнаружить ошибки в конфигурации маршрутизаторов и мостов; установить тип трафика, пересылаемого по глобальной сети; определить используемый диапазон скоростей, оптимизировать соотношение между пропускной способностью и количеством каналов; локализовать источник неправильного трафика; выполнить тестирование последовательных интерфейсов и полное тестирование АТМ; осуществить полный мониторинг и декодирование основных протоколов по любому каналу; анализировать статистику в реальном времени, включая анализ трафика локальных сетей через глобальные сети.

Многие пользователи периодически сталкиваются с теми или иными сетевыми проблемами. Ситуации тут могут быть разные. Скажем, качество связи может ухудшиться и отдельные серверы могут оказаться недоступными. Подобные сбои могут оказаться критичными для пользователей онлайновых сервисов, например, трейдеров, торгующих на фондовом рынке, игроков в сетевые игры и пр. Бывает, что после изменения каких-то настроек на компьютере или смены провайдера вообще не удается получить доступ к сети, а при настройке домашней сети, например, выясняется, что доступ к интернету есть только на одном из компьютеров, и т.п. Во многих подобных случаях приходится проводить диагностику сетевого соединения и проверять работоспособность того или иного удаленного узла.

⇡ Встроенные средства Windows - утилиты Ping и Tracert

В OS Windows имеется несколько утилит для диагностики состояния сети, но чаще всего используются Ping и Tracert. Программа Ping отправляет запрос указанному узлу сети и фиксирует время между отправкой запроса и получением ответа (RTT, от англ. Round Trip Time), иными словами, утилита позволяет определить время отклика интересующего сервера. Понятно, что чем оно меньше, тем обмен данными с этим сервером производится быстрее. Программа Tracert выполняет отправку тестового пакета указанному узлу сети, отображая информацию обо всех промежуточных маршрутизаторах, через которые прошел пакет на пути к запрошенному узлу, а также минимальное, максимальное и среднее время отклика каждого из них. Это позволяет оценить, насколько "длинный" путь прошел пакет и на каком участке возникают наибольшие задержки, связанные с передачей данных. Что означают результаты, выдаваемые утилитами Ping и Tracert? Например, отсутствие отклика от удаленного сервера может свидетельствовать о том, что он сейчас недоступен, или же администратор сервера заблокировал эхо-запросы (при этом остальные службы сервера могут нормально работать). Если время отклика (RTT) удаленных серверов слишком велико и не зависит от их месторасположения, скорее всего, качество вашего подключения оставляет желать лучшего и стоит обратиться к вашему провайдеру. Впрочем, некоторый выигрыш в скорости можно получить и путем настройки интернет-соединения на максимальное быстродействие, для чего лучше воспользоваться специальными утилитами-оптимизаторами, такими как TweakMASTER, но это уже совсем другая тема. Слишком "длинный" маршрут до интересующего сервера (то есть большое количество промежуточных маршрутизаторов на пути соединения с сервером) часто приводит к замедлению связи с ним. Если это критично, то имеет смысл попытаться поискать варианты сокращения длины маршрута. Например, в случае игровых серверов можно сделать выбор в пользу тех, которые находятся как можно "ближе" к серверу вашего интернет-провайдера. Если утилиты показывают, что тестовые пакеты не проходят дальше сервера вашего провайдера, весьма вероятно, что возникли проблемы на его стороне, а может быть это плановые профилактические работы. В применении утилит Ping и Tracert нет никаких хитростей, но технически использовать их не очень удобно. Для запуска ping-теста или трассировки придется открывать окно командной строки и вводить команду, возможно, еще и с параметрами, которые нужно либо запоминать, либо каждый раз обращаться к справке. Например, для проверки работоспособности узла www.сайт потребуется ввести в командной строке команду ping www.сайт , а чтобы выяснить путь прохождения пакетов до данного узла - команду tracert www.сайт . Результаты выполнения этих команд представлены ниже и представляют собой несколько текстовых строк. Отметим, что запускать указанные команды можно и через меню "Пуск" > "Выполнить", но в этом случае окно программы автоматически закрывается сразу после завершения ее работы и все результаты будут потеряны.

Гораздо удобнее использовать специализированные утилиты, которые способны проследить "путешествие" пакетов по сети и по IP-адресу сервера сообщить о нем дополнительную информацию. Подобные утилиты могут оказаться весьма полезными для быстрого анализа и идентификации источника сетевых проблем. На использовании утилит такого плана мы и остановимся в данной статье.

⇡ Диагностические сервисы

Сначала вкратце расскажем об альтернативном варианте диагностики сети - с помощью специальных онлайновых сервисов. В качестве примеров таковых можно привести WhatIsMyIPAddress.com и Yougetsignal.com , а также Whois-сервис . С помощью сервиса WhatIsMyIPAddress.com можно узнать свой внешний IP-адрес, если вы его не знаете или он у вас динамический. Также можно путь прохождения пакетов между своим компьютером и данным сервером. Сделать это просто, нужно в меню "IP Tools" выбрать функцию "Visual Traceroute", ввести свой внешний IP-адрес и щелкнуть по кнопке "Visual Traceroute".

Также можно воспользоваться инструментом "IP lookup" для того, чтобы выяснить кое-какие детали об интересующем IP-адресе, включая имя хоста, географические координаты и местоположение на карте мира. Зачем это нужно? Ну, например, для выхода на источник вторжения в вашу систему, если вы таковое зафиксировали. Воспользовавшись функцией "Visual Trace Route Tool" на сервисе Yougetsignal.com, также можно провести трассировку, для чего достаточно ввести URL сервера или его IP-адрес и щелкнуть на кнопке"Host Trace". В итоге сервис отобразит путь следования пакетов на карте мира, а также в виде списка промежуточных серверов с указанием общего числа переходов и принадлежности каждого из них конкретной стране. Активировав функцию "Network Location Tool", можно выяснить географическое положение любого сервера по его IP-адресу. А воспользовавшись функцией "WHOIS lookup Tool" можно получить информацию о сервере с информационного сервиса WHOIS.

Whois-сервис поможет установить время отклика интересующего сервера (функция "Ping"), определить путь прохождения запроса до сервера и узнать, сколько и какие промежуточные интернет-серверы, маршрутизаторы и другие устройства участвуют в пересылке данных на сервер и обратно (Tracert).

Кроме того, с помощью функции "IP Lookup" можно выяснить по имени хоста его IP-адрес (либо наоборот), а функция "Whois" подскажет, свободен указанный домен или занят. Если домен занят, то можно выявить его владельца и то, как с ним связаться (если вы, например, желаете купить это доменное имя).

Аппаратный и программный аспекты диагностики АПС

Диагностика неисправностей ПЭВМ имеет два аспекта: аппаратный и программный.

Аппаратный аспект подразумевает использование аппаратурных средств диагностики – стандартной КИА, специальной КИА, сервисных плат, устройств и комплексов.

При аппаратном методе диагностики, используются инструменты и приборы для измерений напряжений, параметров сигналов и логических уровней в схемах PC. Этот метод требует глубоких знаний логики работы РС, микросхемотехники, радиоэлектроники, ЭРИ и определенных навыков работы с сервисным тестовым оборудованием.

Следует отметить, что чисто аппаратная диагностика практически не встречается, разве что при диагностике с использованием словарей неисправностей или таблиц эталонных состояний, да и то – симптомы, которыми в этих случаях приходится руководствоваться, выработаны либо ОС, либо
тест-программой, либо микропрограммным тестом, а это уже не чисто аппаратная диагностика. Чисто аппаратной можно считать диагностику отдельных узлов ЭВМ, таких как ТЭЗ, которые проверяются не при автоматическом выполнении АПС проверочных тестов, а при подаче тестирующих последовательностей на исследуемый узел непосредственно от сервисного устройства, например УТК, или генератора стимулирующих воздействий.

Программный аспект диагностики подразумевает использование тестирующих программ различных классов: микропрограммные тесты, встроенные тест-программы, внешние тест-программы общего применения, наконец, – внешние тест-программы углубленного тестирования. Сюда же следует отнести и те небольшие программы или примеры, которые приходится писать самим обслуживателем АПС, для конкретных случаев диагностики неисправностей отдельного узла ЭВМ, ПЭВМ в конкретном режиме его работы.

При программном методе диагностики, большая часть диагностических процедур возлагается на диагностические программные средства. Этот метод требует определенных знаний различных диагностических программ, начиная с POST-программы и кончая программными средствами углубленной диагностики компонент ВС.

Тем не менее, насколько трудно обойтись без программных средств диагностики, настолько и невозможно точно определить место неисправности с точностью до компоненты схемы (ИМС БИС, конкретного ЭРЭ), или до конкретной цепи, без применения аппаратных средств диагностики (осциллографа, мультиметра и т. д.).

2.4.1.1) Стандартная контрольно-измерительная аппаратура

Для замеров уровней напряжений, токов, сопротивлений, наблюдения осциллограмм сигналов в контрольных точках, измерений параметров электрических сигналов, можно использовать обычную, стандартную КИА, с характеристиками, соответствующими измеряемым сигналам и их параметрам.



Ее краткий перечень и назначения:

1) низковольтный тестер (с напряжением питания не более 1,5 В, но лучше – цифровой мультиметр).

Им можно:

Измерять потенциалы на выводах ИМС, определяя уровни логических 0 и 1, или высокоимпедансное состояние (“воздух”);

Проверять целостность линий связи в печатных платах, без риска повреждения ИМС;

Определять, часто без выпаивания, целостность p-n -переходов в полупроводниковых диодах и транзисторах;

Грубо проверять исправность резисторов и конденсаторов;

Измерять величины питающих напряжений и токи потребления от каналов БП;

2) обычный осциллограф (синхроскоп), к сожалению, не всегда помогает при анализе дефектов в РС, так как на SВ РС очень мало синхронно повторяющихся процессов. Осциллограф применим только для просмотра синхросигналов, сигналов интервального таймера, циклов шины, да и то только в том случае, если удается зациклить процесс обращения к порту или ОЗУ по одному и тому же адресу. Осциллограф, однако, поможет разобраться в работе схемы, имеющей дефекты типа замыкания, приводящие к монтажному ИЛИ (когда выходы двух или более ИМС объединяются замыканием в монтаже). В этом случае, если и не удается просмотреть осциллографом развертку всей последовательности импульсов, можно заметить наличие импульсов неправильной, урезанной амплитуды, но для этого все-таки нужно уметь зациклить нужный кусок программы или микропрограмму;

3) телевизионный осциллограф просто незаменим при анализе работы видеомонитора.
TV-осциллограф позволяет выделить одну строку изображения, засинхронизировать ее, и увидеть на экране синхросигналы строчной развертки, бланкирующие импульсы, уравнивающие сигналы и аналоговый видеосигнал с его уровнями яркости и цветности.

Это удобно в том случае, когда используются видеокарты, формирующие полный телевизионный сигнал для модуляции кинескопа и управления развертками.

4) частотомер в диагностике РС применяется редко, и только для точного определения частот задающего генератора синхросигналов и таймеров. Частотомеры обычно имеют довольно низкое входное сопротивление и сильно нагружают исследуемую схему, поэтому к ним дополнительно нужны бестоковые входные адаптеры на полевых транзисторах, или, если хватает чувствительности частотомера, использовать индуктивную петлю связи.

5) двухканальный (многоканальный) осциллограф используются для измерений фазовых характеристик сигналов, например так, как проиллюстрировано на рисунке 2.1.

6) запоминающий осциллограф содержит специальную оперативную память и позволяет зарегистрировать однократный или переходной процесс, в том числе, обнаружить помеху в зарегистрированной последовательности сигналов. Прибор очень дорог и имеет малое быстродействие, часто недостаточное для анализа быстрых процессов в РС. Емкости памяти запоминающего осциллографа часто недостаточно для регистрации длинных последовательностей. Возникают и проблемы с поиском сигнала для синхронизации (запуска регистрации) осциллографа. Но важно то, что такой осциллограф позволяет зафиксировать форму однократного исследуемого сигнала и в этой роли ему нет равных;

синхросигнал Е ─┐ ┌──┐ ┌─канал А
└──────┘ └───────┘
│<───T───>│ период повторения сигнала Е
синхросигнал Q
──────┐ ┌──┐ канал В
└──────┘ └────
│ │<───T───>│ период повторения сигнала Q
──>│ t │<── задержка сигнала Q относительно сигнала Е

Рисунок 2.1. Осциллограмма сдвинутых последовательностей.

7) генератор прямоугольных импульсов вырабатывает непрерывную последовательность импульсов с заданными параметрами и используется, совместно с осциллографом, – для проверки работы пересчетных схем, таймеров и т. п. в СВТ вообще и РС в частности.

Контрольные вопросы.

1. Для чего можно использовать мультиметр, при диагностике неисправностей в СВТ?

2. Где, при диагностике РС, следует использовать телевизионный осциллограф?

3. В чем достоинство и недостатки запоминающего осциллографа?

4. Для чего используется генератор прямоугольных импульсов в диагностике неисправностей СВТ?

Способы функционального контроля

Функциональный контроль определяет способность правильного выполнения функций, возлагаемых на контролируемый объект, и осуществляется путем сравнения с заданными значениями выходных состояний объекта контроля. При этом может выполняться анализ и обработка результатов сравнения, диагностирование и поиск дефектов.

Под техническим обслуживанием понимают контроль технического состояния средств вычислительной техники (СВТ) и определение комплекса технологических операций необходимых для поддержания его работоспособного состояния. Вид технического обслуживания определяется периодичностью и комплексом технологических операций по поддержанию эксплуатационных свойств СВТ.

Виды технического обслуживания СВТ:

· Регламентированное техническое обслуживание должно выполняться в объеме и с учетом наработки, предусмотренном в эксплуатационной документации на СВТ, независимо от технического состояния.

· Периодическое техническое обслуживание должно выполняться через интервалы времени и в объеме, установленными в эксплуатационной документации на СВТ.

· Техническое обслуживание с периодическим контролем должно выполняться с установленной в технологической документации периодичностью контроля технического состояния СВТ и необходимым комплексом технологических операций, зависящих от технического состояния СВТ.

· Техническое обслуживание с непрерывным контролем должно выполняться в соответствии с эксплуатационной документацией на СВТ или технологической документацией по результатам постоянного контроля за техническим состоянием СВТ.

Виды контроля компьютерных систем и комплексов

Контроль технического состояния СВТ может выполняться в статическом или динамическом режимах.

При статическом режиме контрольные значения напряжений и частоты синхроимпульсов остаются постоянными в течение всего цикла профилактического контроля. При динамическом режиме предусматривается периодическое их изменение.



Различают следующие виды контроля:

1 Профилактический контроль;

2 Автоматический контроль

3 Самопроверка.

Любой вид контроля может осуществляется аппаратурным и программным путями.

Аппаратурный контроль проводится с помощью специальной аппаратуры, контрольно-измерительных приборов, стендов, программно-аппаратных комплексов (ПАК) и т.д. Программный контроль осуществляется с помощью специализированного программного обеспечения (ПО).

Работы по устранению неисправностей при профилактическом контроле можно разбить на следующие этапы:

· анализ характера неисправностей по текущему состоянию СВТ;

· контроль параметров окружающей среды и меры по устранению их отклонений;

· локализация ошибки и определение места неисправности с помощью аппаратурных и программных средств СВТ и с помощью дополнительной аппаратуры;

· устранение неисправностей;

· возобновление решения задачи.

Для осуществления технического обслуживания (ТО) создается система технического обслуживания (СТО). В настоящее время наибольшее распространение получили следующие виды СТО:

1 Планово-предупредительное обслуживание;

2 Обслуживание по техническому состоянию;

3 Комбинированное обслуживание.

Планово-предупредительное обслуживание основано на календарном принципе и реализует регламентированное и периодическое технические обслуживания. Эти работы выполняются с целью поддержания устройств СВТ в исправном состоянии, выявлении отказов в оборудовании, предупреждении сбоев и отказов в работе СВТ.

Система включает следующие виды технических обслуживания:

· контрольные осмотры (КО);

· ежедневные ТО (ЕТО);

· еженедельные ТО;

· двухнедельные ТО;

· декадные ТО;

· ежемесячные ТО (ТО1);

· двухмесячные ТО;

· полугодовые или сезонные (СТО);

· годовые ТО;

КО, ЕТО СВТ включает осмотр устройств, прогон теста быстрой проверки работоспособности устройств, а также работы предусмотренные ежедневной профилактикой всех внешних устройств (чистка, смазка и т. д.).

Во время двухнедельного ТО предусматривается прогон диагностических тестов, а также все виды двухнедельных профилактических работ, предусмотренных для внешних устройств.

При ежемесячном ТО предусматривает более полная проверка функционирования СВТ с помощью всей системы тестов, входящих в состав ее программного обеспечения. Проверка производится при номинальных значениях источников питания профилактическом изменении напряжения на + 5%. Профилактическое изменение напряжения позволяет выявить наиболее слабые схемы системы. Обычно схемы должны сохранять свою работоспособность при изменении напряжения в указанных пределах. Однако старение и другие факторы вызывают постепенное изменения рабочих характеристик схем, которые могут быть выявлены на профилактических режимах.

Проверка СВТ с профилактическим изменением напряжения выявляет прогнозируемые неисправности, благодаря чему уменьшается количество труднолокализуемых неисправностей, приводящих к сбоям.

Во время ежемесячной профилактики выполняются все необходимые работы, предусмотренные в инструкции по эксплуатации внешних устройств.

При полугодовом (годовом) ТО (СТО) проводятся те же работы, что при ежемесячном ТО. А также все виды полугодовых (годовых) профилактических работ: разборку, чистку и смазку всех механических узлов внешних устройств с их одновременной регулировкой или заменой деталей. Кроме этого, производится осмотр кабелей и питающих шин.

Метод технического обслуживания СВТ определяется совокупностью организационных мероприятий и комплексом технологических операций по техническому обслуживанию.

Методы технического обслуживания подразделяются:

1 По признаку организации:

· Фирменный метод заключается в обеспечении работоспособного состояния СВТ предприятием-изготовителем, проводящим работы по техническому обслуживанию и ремонту СВТ собственного производства.

· Автономный метод заключается в поддержании работоспособного состояния СВТ в период эксплуатации, при котором техническое обслуживание и ремонт СВТ пользователь выполняет своими силами.

· Специализированный метод заключается в обеспечении работоспособного состояния СВТ предприятием сервиса, проводящим работы по техническому обслуживанию и ремонту СВТ.

· Комбинированный метод заключается в обеспечении работоспособного состояния СВТ пользователем совместно с предприятием сервиса, либо с предприятием-изготовителем и сводится к распределению между ними работ по техническому обслуживанию и ремонту СВТ.

2 По характеру выполнения:

· При индивидуальном ТО обеспечивается обслуживание одного СВТ силами и средствами персонала данного СВТ. В состав комплекта оборудования для этого типа ТО входят:

· аппаратура контроля элементной базы СВТ и электропитания:

· контрольно-наладочная аппаратура для автономной проверки и ремонта средств СВТ;

· комплект электроизмерительной аппаратуры, необходимой для эксплуатации СВТ;

· комплект программ (тестов) для проверки работы СВТ;

· инструмент и ремонтные принадлежности;

· вспомогательное оборудование и приспособления;

· специальная мебель для хранения имущества и оборудование рабочих мест оператора и наладчика элементной базы.

Все перечисленное оборудование предусматривает возможность оперативного поиска и устранения неисправностей с помощью стендовой и контрольно-измерительной аппаратуры.

· Групповое ТО служит для обслуживания нескольких СВТ, сосредоточенных в одном месте, средствами и силами специального персонала. Структура состава оборудования при групповом сервисе та же, что и при индивидуальном, но при этом предполагается наличие большего числа аппаратуры приспособлений и т.д., исключающей неоправданное дублирование. Комплект группового сервиса включает как минимум комплект оборудования индивидуального сервиса СВТ, дополненный аппаратурой и приспособлениями других СВТ.

· Централизованное ТО является более прогрессивной формой обслуживания СВТ. Система централизованного технического обслуживания представляет собой сеть региональных центров обслуживания и их филиалов – пунктов технического обслуживания.

При централизованном обслуживании сокращаются расходы на содержание технического персонала и сервисной аппаратуры. Такое обслуживание предполагает ремонт элементов, узлов и блоков СВТ на базе специальной мастерской, оснащенной всем необходимым оборудованием. Помимо этого, централизованное техническое обслуживание позволяет сосредоточить в одном месте материалы по статистике отказов элементов, узлов, блоков и устройств СВТ, а также получить эксплуатационные данные с десятки однотипных СВТ при прямом контроле достоверности.

Вид ремонта определяется условиями его проведения, составом и содержанием работ, выполняемых на СВТ.

Ремонт СВТ подразделяется на виды:

· Текущий ремонт должен проводиться для восстановления работоспособности СВТ без использования стационарных средств технологического оснащения на месте эксплуатации СВТ.

При текущем ремонте проводится контроль СВТ на функционирование с использованием соответствующих средств проверки.

· Средний ремонт должен проводиться для восстановления работоспособности СВТ, либо составных частей СВТ с использованием специализированных стационарных средств технологического оснащения. При среднем ремонте проверяется техническое состояние отдельных составных частей СВТ с устранением обнаруженных неисправностей и доведением параметров до предусмотренных норм.

· Капитальный ремонт должен проводиться для восстановления работоспособности и ресурса СВТ посредством замены или ремонта составных частей СВТ, в том числе и базовых, с использованием специализированных стационарных средств технологического оснащения в стационарных условиях.

Одной из основных характеристик СТО является длительность профилактики СВТ, которая определяется по формуле 1.1

где t Пi - суммарное время проведения профилактических мероприятий, выполняемых последовательно;

t Вj - время восстановления n неисправностей за время профилактики;

t Ф.К. - время функционального контроля.

На длительность профилактики в большей мере влияет степень квалификации обслуживающего персонала.

Анализ статических данных по эксплуатации конкретной СВТ позволяет дать рекомендации по замене профилактик меньшей периодичности на профилактики большей периодичности (например, ежедневные – на еженедельные). Это позволяет увеличить время использования СВТ непосредственно на вычислительные работы.

Другой важной количественной характеристикой является коэффициент эффективности профилактики k проф, который характеризует степень повышения безотказности СВТ за счет предотвращения отказов в момент профилактики. Коэффициент эффективности профилактики вычисляется по формуле 1.2

где n проф. - количество отказов, выявленных во время профилактики;

n общ n о + n проф. - общее число отказов СВТ за период эксплуатации.

Программный контроль СВТ основан на использовании специальных программ, контролирующих работу СВТ. Он подразделяется на:

· Программно-логический контроль основан на том, что в основную рабочую программу вводятся дополнительные операции, при выполнении которых получается избыточная информация, необходимая для обнаружения и исправления ошибок. Наличие избыточности в информации позволяет, например, находить те или иные контрольные соотношения, которые связывают получаемые в процессе расчета значения и которые можно проверять по программе в конце каждого этапа вычислений. Часто прибегают к двойному просчету, при котором избыточность информации создается путем повторения вычислений, а контрольные соотношения – это совпадение результатов первого и второго просчетов.

Программно-логический контроль не требует применения специальной аппаратуры и позволяет обнаруживать ошибки, обусловленные случайными сбоями, в процессе проведения вычислений. Однако этот вид контроля приводит к значительному увеличению времени решения задачи.

· Тестовый контроль предназначен для проверки правильности работы СВТ или ее отдельных устройств с помощью специальных программ-тестов. Контроль с помощью тестов сводится к выполнению машиной определенных действий над исходными числами и сравнению результатов с известными. В случае несовпадения ответов фиксируется ошибка.

Аппаратурные средства контроля создаются введением в состав СВТ специального дополнительного контрольного оборудования, работающего независимо от программы. Аппаратурный контроль обеспечивает проверку правильности функционирования СВТ практически без снижения ее быстродействия. Однако использование только аппаратурного контроля приводит к значительному усложнению и удорожанию СВТ. Кроме того, введение в состав СВТ большого количества избыточного сложного оборудования может привести к снижению ее общей надежности. Поэтому в современных СВТ применяется комбинированный метод контроля, представляющий собой сочетание программных и аппаратурных средств.

Комбинированный метод контроля позволяет при незначительном снижении эффективности и быстродействия СВТ существенно сократить время поиска и устранения ошибок и общий объем дополнительного оборудования СВТ, потребного для этих целей.

Эффективность системы контроля СВТ характеризуется следующими показателями:

· отношением количества оборудования, охваченного системой контроля, к общему количеству оборудования СВТ;

· вероятностью обнаружения системой контроля ошибок в работе СВТ;

· степенью детализации, с которой система контроля указывает место возникновения ошибки (точность диагноза);

· отношением количества оборудования системы контроля к общему количеству оборудования СВТ.

Эффективные системы контроля и диагностики могут быть созданы при условии, если их разработка и проектирование СВТ проводятся одновременно и взаимосвязано. Только такой подход позволяет создавать наиболее рациональный контроль с минимальными затратами на его реализацию.