Программа для расчета точечных сварочных трансформаторов. Программа для расчета сварочных трансформаторов - файл n8.doc

  • Мощность трансформатора для сварочного аппарата
  • Устройство трансформатора для сварки
  • Стандартный расчет сварочного трансформатора
  • Простой расчет трансформатора для сварки
  • Сечение магнитопровода и подбор витков трансформатора

Расчет сварочного трансформатора выполняется по специфическим формулам. Это происходит вследствие того, что типовые схемы трансформаторов, равно как и методы расчета, нельзя использовать для сварочного инструмента. При изготовлении сварки необходимо отталкиваться от того, что имеется в наличии. Самое главное — это железо. Какое есть, такое и ставят обычно, весь расчет идет именно для конкретного магнитопровода. Конечно же, не всегда он хороший, поэтому возникают нагрев и вибрации. Хорошо, если у вас в наличии имеется железо, параметры которого очень близки к промышленному. Тогда можно смело использовать методики для расчета типовых устройств. Чтобы изготовить сварочный аппарат, потребуется знать его основные параметры и устройство.


Мощность трансформатора для сварочного аппарата

Перед тем как начинать расчет, тем более изготовление, нужно выяснить для себя то, каким должен быть сварочный ток. Так как в быту чаще всего применяют электроды, диаметр которых 3-4 мм, стоит опираться в расчетах на них. Трехмиллиметровых вполне достаточно для работы по дому и хозяйству. Даже кузовные работы в автомобиле можно проводить, не опасаясь за некачественные швы, которые может сделать сварка. Значит, если пал выбор на тройку, нужно выбирать ток около 115 А. Именно при таком токе идеально работают эти электроды. Если же вы решили использовать двойку, ток на выходе аппарата должен быть около 70 А, а для четверки — вдвое больше.

Учтите, что у сварочного трансформатора мощность не должна быть очень большой. Ток потребления — максимум 200 А. Да и то в таком случае будет чрезмерный нагрев не только проводов обмотки, но и кабелей питания. Следовательно, нагрузка на сеть возрастает, и электрические предохранители могут не выдерживать. Так что, если решили использовать электроды толщиной в 3 мм, отталкивайтесь от тока не более 130 А. Для того чтобы вычислить у сварочного трансформатора мощность, вам потребуется произведение тока во вторичной обмотке при воспламенении дуги, угла сдвига фаз, напряжения в режиме покоя разделить на коэффициент полезного действия. В данном случае его можно считать величиной постоянной, она равна 0,7.

Вернуться к оглавлению

Устройство трансформатора для сварки

Самое главное в сердечниках — это форма. Она может быть стержневого (П-образный) или броневого типа (Ш-образный). Если сравнивать их, то окажется, что КПД выше у первого типа устройств для сварки. Плотность намотки тоже может быть достаточно высокой. Конечно же, они чаще всего применяются для изготовления электрической сварки. У самодельного аппарата для сварки металла могут быть обмотки следующих типов:

  • цилиндрические (вторичная обмотка наматывается поверх сетевой);
  • дисковые (обе обмотки располагаются на некотором расстоянии друг от друга).

Цилиндрические обмотки: а – однослойная, б – двухслойная, в – многослойная из круглого провода, 1 – витки из прямоугольного провода, 2 – разрезные выравнивающие кольца, 3 – бумажно-бакелитовый цилиндр, 4 – конец первого слоя обмотки, 5 – вертикальные рейки, 6 – внутренние ответвления обмотки.

Стоит подробнее рассмотреть каждый тип обмоток. Что касается цилиндрической намотки, то она имеет очень жесткие вольт-амперные характеристики. Но он не будет пригоден для применения в ручных сварочных аппаратах. Можно выйти из положения, применив в конструкции аппарата дроссели и реостаты. Но они только усложняют всю схему, что нецелесообразно в большей части случаев.

При использовании дискового типа намотки сетевая отдалена на некоторое расстояние от вторичной. Большая часть возникающего в устройстве магнитного потока (а если точнее, то он возникает в сетевой обмотке) никак не может быть связана (даже индуктивно) с вторичной обмоткой. Такой тип намотки лучше всего использовать в тех случаях, когда имеется необходимость в частой регулировке тока сварки. Внешняя характеристика у таких устройств имеется в необходимом количестве. А от расположения сетевой обмотки относительно вторичной напрямую зависит индуктивность рассеяния сварочного трансформатора. Но она еще зависит и от типа магнитопровода, даже от того, есть ли рядом со сварочным аппаратом металлические предметы. Вычислить точное значение индуктивности не представляется возможным. При расчете применяются приблизительные вычисления.

Ток, необходимый для работы сварки, регулируется путем изменения зазора между первичной и вторичной обмотками. Их, конечно же, следует делать так, чтобы можно было без труда перемещать по магнитопроводу. Вот только в условиях домашнего изготовления такое сделать довольно сложно, но можно сделать определенное число фиксированных значений тока сварки. При использовании сварки в дальнейшем, если потребуется немного уменьшить ток, нужно укладывать кольцами кабель. Учтите только, что он от этого будет греться.

Обмотки трансформатора разнесенные на разные плечи: 1 — первичная, 2 — вторичная.

Очень сильное рассеивание будет у сварочных аппаратов, которые оборудованы сердечниками П-образной формы. Причем у них сетевая обмотка обязательно должна располагаться на одном плече, а вторичная — на втором. Это вследствие того, что расстояние от одной обмотки до другой достаточно большое. Основной показатель сварочного трансформатора — это коэффициент трансформации. Он может быть вычислен путем деления числа витков вторичной обмотки на число витков первичной. Такое же значение вы получите, разделив выходной ток или напряжение на соответствующую входную характеристику (ток или напряжение).

Вернуться к оглавлению

Стандартный расчет сварочного трансформатора

Следующая методика применяется исключительно при проведении расчетов преобразующих устройств с использованием магнитопроводов только лишь П-образной формы. Обе обмотки намотаны на одинаковых каркасах, располагаются на разных плечах. Следует учитывать, что необходимо половины обеих обмоток соединять последовательно между собой. Например, производится расчет преобразователя для работы с электродами 4 мм. Для этого необходим ток во вторичной обмотке примерно 160 А. Напряжение на выходе должно составить 50 В. В это же время сетевое (питающее) напряжение принимать следует 220 или 240 В. Пусть продолжительность работы будет 20%.

Для расчета необходимо вводить параметр мощности, учитывающий продолжительность работы. Эта мощность будет равна: Рдл = I2 x U2 x (ПР/100)1/2 х 0,001.

Для параметров сварочного аппарата, которые были взяты за отправную точку, значение мощности равно 3,58 кВт. Теперь необходимо вычислить число витков обмоток. Для этого: E = 0,55 + 0,095 × Pдл.

Расположение обмоток на стержнях в трансформаторах: 1 - стержень, 2 - обмотка ВН, 3 — обмотка НН, 4,5- группы катушек.

В этой формуле Е — это электродвижущая сила одного витка. Для рассчитываемого устройства это значение будет равно 0,89 Вольт/виток. То есть с каждого витка преобразователя можно снять 0,89 В. Следовательно, отношение 220/0,89 — это число витков первичной обмотки. А отношение 50/0,89 — это число витков вторичной .

В первичной обмотке будет ток, равный отношению произведения тока вторичной обмотки и коэффициента k=1,1 к коэффициенту трансформации. В примере получится ток, равный 40 А. Для определения сечения сердечника сварочного трансформатора нужно использовать формулу: S = U2 × 10000/(4.44×f×N2×Bm).

Для расчета в примере площадь будет равна 27 см². При этом f принимается равным 50 Герц, а Bm — это индукция поля (магнитного) в сердечнике устройства. Ее значение принимается равным 1,5 Тесла.

Для сварочного трансформатора, который будет работать с электродами толщиной в 4 мм, получены такие характеристики, как:

Типы магнитных сердечников: а — броневой, б — стержневой.

  • ток сварки — 160 А;
  • площадь сечения сердечника — 28,5 см²;
  • первичная обмотка содержит 250 витков.

Но данные характеристики справедливы для сварочного трансформатора. Только при изготовлении его использовалась схема, в которой применено увеличенное значение магнитного рассеивания. Воспроизвести в домашних условиях такое устройство вряд ли получится, поэтому окажется проще изготовить трансформатор с намоткой вторичной обмотки непосредственно поверх сетевой. Даже если принять во внимание условие того, что неизбежны применение дросселей, ухудшение характеристик, то магнитный поток такого нехитрого устройства будет сконцентрирован в определенной точке и вокруг нее. А вся энергия в ней способна передаваться рационально.

Вернуться к оглавлению

Простой расчет трансформатора для сварки

Стандартные методы расчета трансформаторов неприемлемы в большинстве случаев, так как применяется и железо нестандартных форм, и провод с неизвестным сечением, вычисленным приблизительно. При расчете были получены такие характеристики сварочного трансформатора, как площадь сечения магнитопровода и количество витков. Стоит заметить, что при увеличении площади сечения вдвое характеристики самого трансформатора не ухудшатся. Придется только изменить число витков первичной обмотки, чтобы добиться требуемой мощности.

Чем больше у магнитопровода сечение, тем меньше витков придется наматывать. Используйте такое качество, если испытываете затруднения с обмоточным проводом. Для расчета числа витков первичной обмотки можно воспользоваться простыми формулами:

Зависимости тока в первичной обмотке трансформатора от питающего напряжения, в режиме холостого хода.

  • N1 = 7440×U1/(Sиз×I2);
  • N1 = 4960×U1/(Sиз×I2).

Первая применяется при расчете сварочных аппаратов, у которых обе обмотки располагаются на одном и том же плече. Для разнесенных обмоток применяться должна вторая формула. В этих формулах Sиз — это сечение магнитопровода, измеренное перед проведением расчетов. Учтите, что при разнесении обмоток на разные плечи вы не получите на выходе сварочного аппарата ток свыше 140 А. А для любого типа устройств принимать в расчет значение тока, которое больше 200 А, тоже нельзя. И не забывайте о том, что у вас есть множество неизвестных:

  • сорт трансформаторного железа;
  • напряжение в сети и его изменение;
  • сопротивление в линии электропередач.

Чтобы исключить возможность влияния таких второстепенных факторов на работу сварочного трансформатора, необходимо через каждые 40 витков делать отвод. Вы сможете в любой момент изменить режим работы трансформатора, подав напряжение питания на меньшее или большее число витков.

Соединение металлических деталей электрической дугой известно уже более 120 лет, но немногие знают все тонкости этого процесса, что очень важно для того, чтобы сделать расчет сварочного трансформатора для простейшего аппарата и полуавтомата.

1 На чем базируется расчет сварочного трансформатора?

Прежде, чем разбираться в формулах, давайте рассмотрим принцип действия простейшего аппарата для . Основой такого агрегата является понижающий трансформатор, позволяющий изменить входящее напряжение, соответствующее в быту 220 В, на более низкое, до 60 В для так называемого холостого хода или, иначе, состояния покоя. То, какие можно будет использовать с устройством, зависит от силы тока, которая должна быть в пределах 120-130 А для наиболее популярного трехмиллиметрового диаметра расходного материала .

И вот здесь как раз требуются расчеты, поскольку, если стержень электрода плавится при определенной силе тока, значит, она будет в той же степени нагревать и сердечник трансформатора, а также проволоку обмотки. Следовательно, для того, чтобы узнать оптимальную мощность трансформатора, нам нужно сначала вычислить рабочее напряжение, ориентируясь на рабочую силу тока. Для этого существует формула U 2 = 20 + 0,04I 2 , где U 2 – напряжение на вторичной обмотке, а I 2 – выдаваемый аппаратом максимальный сварочный ток.

Теперь вернемся к сердечнику, который не зря так называется, поскольку является сердцем трансформатора, как самого простого, так и полуавтомата. Он составляется из металлических пластин, которые способны выдержать определенную нагрузку по мощности тока. Это допустимое значение зависит от размеров сердечника и называется габаритной мощностью, которую можно найти, зная значение напряжения холостого хода. Последнее высчитывается по формуле U хх = U 2 S , где S – площадь сечения провода вторичной обмотки. Зависимость этой площади от диаметра проводника определяем по формуле S = πd 2 /4 , или по следующим таблицам:

Допустимые токовые нагрузки на провода с медными жилами

Диаметр провода, мм Допустимая сила тока, А жилы, мм 2 Диаметр провода, мм Допустимая сила тока, А
0.5 0.78 11 35 6,7 170
0,75 0.98 15 50 8,0 215
1,0 1,13 17 70 9.5 270
1,5 1,4 23 95. 11.0 330
2,5 1,8 30 120 12,4 385
4,0 2,26 41 150 13.8 440
6.0 2,8 50 185 15,4 510
10 3,56 80 240 17,5 605
16 4,5 100 300 19,5 695
25 5,6 140 400 22,5 830

Допустимые токовые нагрузки на провода с алюминиевыми жилами

Площадь сечения токопроводящей жилы, мм 2 Диаметр провода, мм Допустимая сила тока, А Площадь сечения токопроводящей жилы, мм 2 Диаметр провода, мм Допустимая сила тока, А
2 1,6 21 35 6,7 130
2,5 1,78 24 50 8,0 165
3 1,95 27 70 9.5 210
4 2,26 32 95. 11.0 255
5 2,52 36 120 12,4 295
6 2,76 39 150 13.8 340
8 3,19 46 185 15,4 390
10 3,56 60 240 17,5 465
16 4,5 75 300 19,5 535
25 5,6 105 400 22,5 645

2 Расчет для сварочного трансформатора по формулам и онлайн

Итак, у нас есть все необходимые параметры для того, чтобы вычислить габаритную мощность сердечника. Далее работаем по формуле P габ = U хх I 2 cos (φ)/η , где φ – угол смещения фаз между напряжением и током (можно принять величину 0.8), а η – КПД (принимаем 0.7). Остается найти допустимую мощность, которую выдержит аппарат при длительной работе. При этом учитываем, что коэффициент продолжительности работы (обозначим его ПР) составляет около 20 % от времени подключения трансформатора к сети.

Поэтому считаем следующим образом: P дл = U 2 I 2 (ПР/100) 0.5 0.001 , или, иначе P дл = U 2 I 2 (20/100) 0.5 0.001 , что соответствует P дл = U 2 I 2 0.00045 . В целом продолжительность работы и сила сварочного тока практически не связаны. В большей степени на время дугового режима влияет сечение проволоки обмотки и качество изоляции, а также то, насколько плотно и, главное, ровно, уложены витки. Следовательно, теперь мы можем узнать электродвижущую силу одного витка в вольтах, используя формулу E = P дл 0.095 + 0.55 .

Далее, получив результат эмпирической зависимости по последней формуле, высчитываем оптимальное количество витков для обмотки, как первичной, так и вторичной. Для той и другой используем две формулы, соответственно N 1 = U 1 /E , где U 1 – входящее напряжение сети, а N 2 = U 2 /E . Сила сварочного тока регулируется увеличением или уменьшением расстояния между первичной и вторичной обмотками: чем оно больше, тем ниже мощность на выходе. Тем, кто делает приведенный расчет с целью самостоятельной сборки трансформатора, а не для приобретения готового сварочного полуавтомата, понадобится еще и вычисление габаритов сердечника.

Площадь сечения металла определяется по формуле S = U 2 10000/(4.44fN 2 B m) , где f – промышленная частота тока (принимаем за 50 Гц), B m – индукция магнитного поля (принимаем за 1.5 Тл). Теперь можно узнать ширину стальной пластины в пакете трансформатора: a = (100S /(p 1 k c)) 0.5 , где за p 1 принимаем диапазон значений 1.8-2.2 (рекомендуется среднее), k с – коэффициент заполнения стали (соответствует 0.95-0.97).

Исходя из значения ширины пластины, выясняем толщину пакета пластин плеча, для чего используем формулу b = ap 1 , а затем и ширину окна магнитопровода c = b/p 2 , где p 2 имеет диапазон значений 1–1.2 (рекомендуется максимальное). К слову, если уж мы взялись измерять габариты, вспомним про коэффициент заполнения стали, который обозначает промежутки между пластинами. С учетом этого показателя площадь сечения сердечника будет несколько иной, поэтому назовем ее измеряемой величиной и определим заново. Формула для этого потребуется следующая: S из = S/k c . В большинстве случаев эти расчеты не нужны при наличии онлайн-калькулятора.

Расчет количества витков первичной обмотки трансфрматора

Введите силу сварочного тока


Расчет количества витков вторичной обмотки трансфрматора

Введите силу сварочного тока

3 Как сделать расчет самодельного тороидального сварочного трансформатора?

По сути, тор – это объемное геометрическое тело, хотя в математике бытует понятие "поверхность". То есть это даже не фигура, а замкнутая поверхность, имеющая одну общую для любой размещенной на ней точки сторону. Но, если не вдаваться в дебри терминологии, тор – это бублик, или окружность, вращающаяся вокруг некой не пересекающей ее оси, с которой располагается в одной плоскости. Именно в форме такого бублика может быть выполнен трансформатор-тороид.

Основная его характеристика – высокий КПД при небольших, в сравнении с другими типами сердечников, размерах. Что и является основополагающим критерием для предпочтения данной формы самодельных трансформаторов. Основное отличие тороидального трансформатора от прочих – прокладка только межобмоточной изоляции наряду с внешней. Межслоевая не делается по той простой причине, что витки провода, проходя сквозь отверстие тора, создают дополнительную толщину внутреннего диаметра, что исключает использование лишних слоев изоляции.

Именно это значительно усложняет сборку тороида, и потому он редко устанавливается в корпусе полуавтомата, где чаще можно увидеть стержневые сердечники. Чтобы не возникали пробивания, применяются провода с повышенной прочностью изоляционного покрова. В качестве прокладки можно взять лавсан или ленту ФУМ (фторопластовую).

Для определения габаритной мощности сердечника, выполненного в виде тора, нам достаточно узнать две площади: окна и сечения.

Первую вычисляем по формуле S окна = 3.14(d 2 /4) , где d – внутренний диаметр тора. Вторая формула выглядит следующим образом: S сеч = h((D-d)/2) , здесь D – внешний диаметр "бублика". Далее остается только рассчитать габаритную мощность трансформатора, для чего используем простейший способ умножения двух получившихся ранее результатов. Иными словами, P габ [Вт] = S окна [кв.см] * S сеч [кв.см] . Дальнейшие вычисления ориентируем согласно таблице:

P габ ω 1 ω 2 (А / мм 2 ) η
До 10 41/S 38/S 4.5 0.8
10-30 36/S 32/S 4 0.9
30-50 33.3/S 29/S 3.5 0.92
50-120 32/S 28/S 3 0.95

Здесь P габ – габаритная мощность трансформатора, ω 1 – число витков на вольт (для стали Э310, Э320, Э330), ω 2 – число витков на вольт (для стали Э340, Э350, Э360), –допустимая плотность тока в обмотках, ŋ – КПД трансформатора.

Определив количество витков на каждый вольт для сердечника из той или иной стали, можем узнать, сколько витков всего нужно будет выполнить при изготовлении трансформатора. Для этого используются две формулы, для первичной и вторичной обмотки соответственно: N 1 = ω 1 U 1 и N 2 = ω 2 U 2 . Далее следует учесть некоторое падение напряжения, возникающее из-за небольшого сопротивления в обмотках, которое, впрочем, в тороиде довольно незначительное.

Для этого увеличиваем количество витков вторичной обмотки на 3 % (в других типах сердечников понадобилось бы больше): N 2_компенс = 1.03 N 2 . Для того чтобы узнать диаметр проволоки, используем формулу для первой обмотки d 1 = 1.13(I 1 /∆) 0.5 и для второй: d 2 = 1.13(I 2 /∆) 0.5 . При этом результаты округляем в большую сторону и выбираем ближайшие доступные провода.

Представляем автоматизированный КАЛЬКУЛЯТОР

"Расчет угловых сварных швов"

(СП 16.13330.2011 Стальные конструкции, Пособие по расчету и конструированию сварных соединений СК к главе СНиП II-23-81)

Материалы предназначены для инженеров проектировщиков

Краткий видео обзор:

ВОЗМОЖНОСТИ КАЛЬКУЛЯТОРА

Автоматизированный расчет широкого класса угловых сварных швов.

Разработанный комплекс в своем секторе превосходит программный комплекс SCAD Office (раздел "Кристалл. Сварные соединения") по спектру решаемых схем угловых швов, количеству действующих на швы внешних нагрузок (Qx, Qy, N, Mx, My, Mz), при этом также понятен и удобен в использовании.

Калькулятор снабжен 12 видео материалами (более 4 часов) с рассмотрением теоретических основ расчета угловых сварных швов и пошаговым сопровождением множества примеров расчета швов различной конфигурации.

Достаточно ввести исходные данные, чтобы мгновенно получить коэффициент несущей способности расчетных швов.

Живые отзывы и комментарии из аккаунта Макеев С.А.
http://bit.ly/1A1IQWr http://bit.ly/129OcAT

В рамках более подробного ознакомления с материалами Калькулятора расчета угловых сварных швов в настоящее время доступны для бесплатного просмотра (ЮТ) и скачивания следующие видео (общая ссылка на плейлист):

1. Видеообзор Калькулятора «Расчет угловых сварных швов» https://youtu.be/BE40vVJNPN4

2. Введение и краткая теория расчета угловых сварных швов https://youtu.be/X7eRLGFt8X0

3. Расчет сварных угловых швов нахлесточного соединения (1, 2, 3 ) https://youtu.be/8W1iZIWP4l8

4. Расчет сварных угловых швов прямоугольных в плане https://youtu.be/Yilrh6DmL0U

5. Расчет сварных угловых швов кольцевого очертания в плане https://youtu.be/R9AsQcdYz4s

6. Расчет угловых сварных швов двутаврового очертания https://youtu.be/xhGO5Oxqi1g

7. Расчет вертикальных прямоугольных в плане угловых сварных швов https://youtu.be/zYkY76tiVHw

8. Расчет горизонтальных в плане Н-образных угловых швов https://youtu.be/Lt4k6PoxFDQ

9. Расчет швов элементов ферм из спаренных уголков https://youtu.be/Z5dFXq-jLX0

10. Расчет вертикальных кольцевых в плане угловых швов https://youtu.be/z6TI7rEFugU

11. Расчет горизонтальных радиально ориентированных в плане швов https://youtu.be/22bUl_B5S3Y

12. Сварные швы при кручении стойки из коробки швеллеров https://youtu.be/kXdxBXln__M

При заказе калькулятора Вам на почту будет отправлена ссылка на скачивание папки всех материалов: 12 видео файлов, самого Excel-файла Калькулятора и комплекта справочной и нормативной литературы с облака или Яндекс-диска.

Состав папки на скачивание материалов Калькулятора представлен ниже:

Состав папки видеоматериалов (12 видео общей длительностью более 4 часов) Калькулятора представлен ниже:

Данный расчет трансформатора для сварки подойдет и для того что бы провести расчет трансформатора для точечной сварки.

Как уже не раз было описано, трансформатор состоит из сердечника и двух обмоток. Именно эти элементы конструкции отвечают за основные для сварки. Зная заранее, какими должны быть номинальная сила тока, напряжение на первичной и вторичной обмотках, а также другие параметры (), выполняется расчет для обмоток, сердечника и сечения провода.

Проводим точный расчет трансформатора для сварки!

При выполнении расчетов трансформатора для сварки за основу берутся следующие данные:

Напряжение первичной обмотки U1 . По сути, это напряжение сети, от которой будет работать трансформатор. Может быть 220 В или 380 В; номинальное напряжение вторичной обмотки U2. Напряжение электричества, которое должно быть после понижения входящего и не превышающее 80 В. Требуется для возбуждения дуги; номинальная сила тока вторичной обмотки I. Этот параметр выбирается из расчета, какими электродами будет вестись сварка и какой максимальной толщины металл можно будет сварить; площадь сечения сердечника Sс. От площади сердечника зависит надежность работы аппарата. Оптимальной считается площадь сечения от 45 до 55 см2; площадь окна So. Площадь окна сердечника выбирается из расчета хорошего магнитного рассеяния, отвода избытка тепла и удобства намотки провода. Оптимальными считаются параметры от 80 до 110 см2;

Плотность тока в обмотке (A/мм2) . Это довольно важный параметр, отвечающий за электропотери в обмотках трансформатора. Для самодельных сварочных трансформаторов этот показатель составляет 2,5 - 3 А. сайт

В качестве примера расчетов возьмем следующие параметры для сварочного трансформатора: напряжение сети U1=220 В, напряжение вторичной обмотки U2=60 В, номинальная сила тока 180 А, площадь сечения сердечника Sс=45 см2, площадь окна So=100 см2, плотность тока в обмотке 3 А.

P = 1,5*Sс*So = 1,5*45*100 = 6750 Вт или 6,75 кВт.

Важно! В данной формуле коэффициент 1,5 применим для трансформаторов с сердечником типа П, Ш. Для тороидальных трансформаторов этот коэффициент равен 1,9, а для сердечников типа ПЛ, ШЛ 1,7.

Важно! Также как и в первой формуле, коэффициент 50 использован для трансформаторов с сердечником типа П, Ш. Для тороидальных трансформаторов он будет равен 35, а для сердечников типа ПЛ, ШЛ 40.

Теперь выполняем расчет максимальной силы тока на первичной обмотке по формуле: Imax = P/U = 6750/220 = 30,7 А. Осталось на основании полученных данных выполнить расчет витков.

Для расчета витков используем формулу Wх =Uх*K. Для вторичной обмотки это будет W2 = U2*K = 60*1,11 = 67 витков. Для первичной расчет выполним чуть позже, так как там применяется другая формула. Довольно часто, особенно для тороидальных трансформаторов, выполняется расчет ступеней регулирования силы тока. Это делается для вывода провода на определенном витке. Выполняется расчет по следующей формуле: W1ст = (220*W2)/Uст.

  • Uст - выходное напряжение вторичной обмотки.
  • W2 - витки вторичной обмотки.
  • W1ст - витки первичной обмотки определенной ступени.

Но прежде необходимо рассчитать напряжение каждой ступени Uст. Для этого воспользуемся формулой U=P/I. К примеру нам необходимо сделать четыре ступени с регулировкой на 90 А, 100 А, 130 А и 160 А для нашего трансформатора мощностью 6750 Вт. Подставив данные в формулу, получим U1ст1=75 В, U1ст2=67,5 В, U1ст3=52 В, U1ст4=42,2 В.

Полученные значения подставляем в форму расчета витков для ступеней регулировки и получаем W1ст1=197 витков, W1ст2=219 витков, W1ст3=284 витка, W1ст4=350 витков. Добавив к максимальному значению полученных витков для 4-й ступени еще 5 %, получим реальное количество витков - 385 витков.

Напоследок рассчитываем сечение провода на первичной и вторичной обмотках. Для этого делим максимальный ток для каждой обмотки на плотность тока. В результате получим Sперв = 11 мм2 и Sвтор = 60 мм2.

Важно! Расчет трансформатора контактной сварки выполняется аналогичным образом. Но есть ряд существенных отличий. Дело в том, что номинальная сила тока вторичной обмотки для таких трансформаторов порядка 2000 - 5000 А для маломощных и до 150000 А для мощных. В дополнение для таких трансформаторов регулировка делается до 8 ступеней с использованием конденсаторов и диодного моста.

Как рассчитать трансформатор видео.