Большая энциклопедия нефти и газа. Функциональная схема современного радиопередающего устройства

Под радиопередающим устройством (РПдУ) понимают комплекс оборудования, предназначенный для формирования и излучения радиосигналов. Основными узлами РПдУ являются генератор несущей частоты и модулятор. В современных системах связи РПдУ содержит и другое оборудование, обеспечивающее совместную работу средств связи: источники питания, системы синхронизации, автоматического управления, контроля и сигнализации, защиты и т.д.

Обобщенная структурная схема радиопередающего устройства с амплитудной либо фазовой модуляцией сигналов приведена на рисунке 7.9.

Первичный сигнал, подлежащий передаче, поступает на входную цепь. Входная цепь обеспечивает согласование этого сигнала с РПдУ, в конечном итоге, это определяется параметрами модулированного радиосигнала, передаваемого в линию.

Генератор несущей частоты формирует колебания несущей частоты, которые и являются переносчиками сообщения. В современных системах связи генератор несущей частоты выполняют в виде синтезатора частот. Синтезатор частот - устройство, предназначенное для формирования в заданном диапазоне частот высоко стабильных колебаний, определяемых стабильностью параметров задающего генератора.

Модулятор - узел, в котором на параметры несущего колебания накладывается передаваемое сообщение. При формировании в РпдУ радиосигналов с амплитудной или фазовой модуляцией синтезатор частоты вырабатывает колебания с постоянной частотой. При дополнительном воздействии модулирующим сигналом на частоту выходного колебания синтезатора частот можно получить радиосигналы с частотной модуляцией.

Рис. 7.9 Обобщенная структурная схема радиопередающего устройства

Усилитель мощности предназначен для увеличения уровня радиосигнала до величины, определяемой мощностью излучаемого сигнала в системе связи. Необходимое согласование РПдУ с антенной обеспечивает выходная цепь.

Преимущества цифровых методов обработки информации (передача, хранение, преобразование) способствовали широкому распространению цифровых систем связи. Достоинством представления сигналов в цифровом виде является также ее универсальность, то есть независимость от природы передаваемых сообщений. Современные системы связи способны передавать не только дискретные сообщения, но и непрерывные (как по времени, так и по уровню). Для преобразования непрерывных сигналов в цифровые служат специальные устройства - аналого-цифровые преобразователи (АЦП).

В аналого-цифровом преобразователе из сигнала, непрерывного по времени, сначала выбирают значения сигнала в определенные моменты времени. Чаще всего такие отсчеты берут через одинаковые промежутки времени. Выбранные значения сигнала называют выборками, а операцию получения отсчетов называют дискретизацией по времени.

На следующем этапе обработки весь диапазон возможных значений сигнала разбивают на определенное количество интервалов и выясняют, к какому из этих интервалов относится значение текущей выборки. На этом этапе обработки за значение сигнала принимается не действительное значение выборки, а ближайшее к нему округленное значение сигнала. Это значение может соответствовать середине того интервала, в который попадает данный отсчет, либо другому значению из этого интервала (начало или конец этого интервала). Операция замены действительного значения сигнала ближайшим к нему округленным значением называется квантованием, а ширину этого интервала называют шагом квантования. Если все интервалы, на которые разбиваются возможные значения сигнала, одинаковые, то такое квантование называется равномерным. В некоторых случаях, например, при передаче речи, оказывается выгодным такие интервалы делать неодинаковыми. В таком случае говорят о неравномерном квантовании.

На последнем этапе аналого-цифровой преобразователь заменяет действительное значение выборки номером того интервала, в пределах которого находится значение данного отсчета. Операция замены значения отсчета номером (кодом) называется кодированием. Наибольшее распространение в современных системах получило представление отсчетов в виде двоичных кодов. Затем полученные коды передаются по системе связи.

Упрощенная структурная схема приемопередатчика цифровой системы связи приведена на рисунке 7.10. Рассмотрим работу этого устройства.

РАДИОПЕРЕДАЮЩИЕ УСТРОЙСТВА

РАДИОПЕРЕДАЮЩИЕ УСТРОЙСТВА

Устройства для формирования радиосигналов, предназначенных для передачи информации на расстояние с помощью радиоволн.

Р. у. формируют радиосигналы с заданными характеристиками, необходимыми для работы конкретных ра-диотехн. систем, и излучают их в . В любых Р. у. осуществляются следующие осн. физ. процессы: генерация эл.-магн. колебаний в заданном участке радиодиапазона; управление параметрами этих колебаний (амплитудой, частотой, фазой, поляризацией и т. д.) по закону передаваемой информации (амплитудная, частотная и др. виды модуляции; см. Модулированные ); излучение радиосигналов в при помощи антенны, связанной с генератором электромагнитных колебаний либо непосредственно, либо через линию связи. Помимо создания радиосигналов, предназначенных специально для передачи информации, Р. у. применяются в системах радионавигации, ди-станц. зондирования земной поверхности и др. целей.

Структурные схемы Р. у. различны в зависимости от требований к характеристикам формируемых в них радиосигналов. Типовые Р. у. для радиовещания с амплитудной (AM) или частотной (ЧМ) модуляцией строятся обычно по многокаскадной схеме (рис. 1, а, б).

Рис. 1. Типовые структурные схемы радиопередающих устройств с амплитудной (а) и частотной (б) модуляцией: 1 - задающий генератор, стабилизированный кварцем (возбудитель); 2 - частотно-модулируемый возбудитель; 3 - буферный усилитель; 4 - каскады умножения частоты; 5 - модулируемый каскад; 6 - предоконечный усилитель; 7 - выходной усилитель мощности; 8 - модулятор; 9 - система автоподстройки центральной частоты; 10 - антенна.

Генерирование высокостабильных первичных колебаний осуществляется в спец. устройствах - возбудителях Р. у. Иногда (напр., при ЧМ) формирование радиосигналов производится сразу путём модуляции первичных колебаний. В качестве простых возбудителей используются автогенераторы на транзисторах, лавинно-пролётных диодах и т. д. Поскольку частота автоколебаний, близкая к собств. частоте колебательной системы, зависит от режима работы активного элемента, принимаются жёсткие по защите всех элементов автогенератора от влияния дестабилизирующих факторов. Мин. достижимый уровень нестабильности частоты автогенератора ограничен шумами, т. е. естеств. флуктуациями фазы и амплитуды автоколебаний (см. Стабилизация частоты ). В совр. Р. у. с быстрой электронной перестройкой в широком диапазоне рабочих частот в качестве возбудителей колебаний используются синтезаторы частот - устройства, генерирующие высокостабильных колебаний на дискретных частотах, синтезируемых из колебаний одного прецизионного кварцевого генератора или квантового стандарта частоты. Схемы синтезаторов строятся с использованием систем автоподстройки частоты и фазовой синхронизации колебаний. .

Для ослабления влияния последующих каскадов на режим работы возбудителей колебаний в схемы Р. у. включаются т. н. буферные усилители, потребляющие мин. сигнала от автогенератора. Часто в тех же целях прибегают к умножению частоты задающего генератора, что одноврем. повышает устойчивость работы Р. у. в целом. В качестве нелинейных элементов в каскадах умножения частоты используют ВЧ-тран-зисторы, пролётные клистроны и др. активные приборы. В диапазоне СВЧ находят применение полупроводниковые диоды ( варикапы).

Выходные усилители мощности Р. у., связанные с антенной непосредственно или через линию связи, обеспечивают заданную излучаемую мощность. Эти усилители строятся по схеме генератора с внеш. возбуждением, и в качестве активных элементов в них используются мощные транзисторы или металлокерамич. электронные лампы (часто с принудит. охлаждением электродов). В диапазоне СВЧ применяются пролётные клистроны и усилительные приборы с распределённым взаимодействием - лампы бегущей волны и лампы обратной .

Управление параметрами колебаний в соответствии с передаваемой информацией S(t )производится с помощью модуляторов. AM в маломощных вещательных Р. у. осуществляется, напр., изменением по закону S(t )управляющего напряжения на активном элементе; затем происходит усиление модулиров. колебаний. В радиолокации, радиорелейных линиях связи и мн. др. системах широко применяют разновидность AM - импульсную модуляцию (ИМ). При ИМ высокочастотные колебания на выходе Р. у. вырабатываются лишь в течение коротких интервалов времени (импульсов), разделённых большими или меньшими паузами. В мощных импульсных модуляторах используется метод накопления электрич. (или магн.) энергии в ёмкостных (или индуктивных) накопителях. Накопление энергии происходит во паузы с последующим разрядом накопителя на генератор через электронный или газоразрядный .

В функциональном смысле под радиопередающим устройством понимается комплекс оборудования, предназначенный для формирования и излучения радиочастотного сигнала (радиосигнала). В качестве функциональных узлов в состав радиопередатчика входят генератор несущей и модулятор. Кроме того, радиопередающие устройства (особенно мощные) содержат много другого оборудования: источники питания, средства охлаждения, автоматического и дистанционного управления, сигнализации, защиты и блокировки и пр.

Основные показатели радиопередающих устройств условно могут быть разделены на 2 группы: энергетические и показатели электромагнитной совместимости.

Важнейшими энергетическими показателями радиопередающего устройства являются номинальная мощность и промышленный коэффициент полезного действия. Под номинальной мощностью (Р) понимают среднее за период радиочастотного колебания значение энергии, подводимой к антенне. Промышленный коэффициент полезного действия (КПД) представляет собой отношение номинальной мощности Р к общей Р общ, потребляемой от сети переменного тока радиопередающим устройством: η = Р/Р общ · 100% .

Основными показателями электромагнитной совместимости являются диапазон рабочих частот, нестабильность частоты колебаний и внеполосные излучения.

Диапазоном рабочих частот называют полосу частот, в которой радиопередающее устройство обеспечивает работу в соответствии с требованиями стандарта.

Под нестабильностью частоты радиопередатчика понимают отклонение частоты колебаний на его выходе за определенный промежуток времени относительно установленной частоты. Малая нестабильность (высокая стабильность) частоты позволяет ослабить помехи радиоприему.

Внеполосными называют такие излучения , которые расположены вне полосы, отведенной для передачи полезных сообщений. Внеполосные излучения являются источником дополнительных помех радиоприему. При подавлении внеполосных излучений качество передачи сигнала не ухудшается.

По назначению радиопередающие устройства делятся на связные. Радиовещательные и телевизионные. По диапазону рабочих частот радиопередающие устройства подразделяются в соответствии с классификацией видов радиоволн. В зависимости от номинальной мощности радиопередающие устройства делятся на маломощные (до 100 Вт), средней мощности (от 100 до 10000 Вт), мощные (от 10 до 500 кВт) и сверхмощные (свыше 500 кВт).

Специфика эксплуатации позволяет выделить стационарные и подвижные радиопередающие устройства (автомобильные, самолетные, носимые и т.д.).

Радиоприемные устройства

Радиоприем – это выделение сигналов из радиоизлучения. В том месте, где ведется радиоприем, одновременно существуют радиоизлучения от множества естественных и искусственных источников. Мощность полезного радиосигнала составляет очень малую долю мощности общего радиоизлучения в месте радиоприема. Задача радиоприемного устройства сводится к выделению полезного радиосигнала из множества других сигналов и возможных помех, а также к воспроизведению (восстановлению) передаваемого сообщения.

Основными (в смысле универсальности) показателями радиоприемных устройств являются: диапазон рабочих частот, чувствительность, избирательность, помехоустойчивость.

Диапазон рабочих частот определяется диапазоном возможных частот настройки. Другими словами, это область частот настройки, в пределах которой радиоприемное устройство может плавно или скачкообразно перестраиваться с одной частоты на другую.

Чувствительность является мерой способности радиоприемного устройства обеспечивать прием слабых радиосигналов. Количественно оценивается минимальным значением электродвижущей силы (ЭДС) сигнала на входе радиоприемного устройства, при котором имеет место требуемое отношение сигнал-шум на выходе при отсутствии внешних помех.

Избирательностью называется свойство радиоприемного устройства, позволяющее отличать полезный радиосигнал от радиопомехи по определенным признакам, свойственным радиосигналу. Иначе: это способность радиоприемного устройства выделять нужный радиосигнал из спектра электромагнитных колебаний в месте приема, снижая мешающие радиосигналы. Различают пространственную и частотную избирательности. Пространственная избирательность достигается за счет использования антенны, обеспечивающей прием нужных сигналов с одного направления и ослабления радиосигналов с других направлений от посторонних источников. Частотная избирательность количественно характеризует способность радиоприемного устройства выделять из всех радиочастотных сигналов и радиопомех, действующих на входе, сигнал, соответствующий частоте настройки радиоприемника.

Помехоустойчивостью радиоприемного устройства называется его способность противодействовать мешающему действию помех. Количественно помехоустойчивость оценивается тем максимальным значением уровня помехи в антенне, при котором еще обеспечивается прием радиосигналов.

Радиоприемные устройства можно классифицировать по различным признакам. По назначению можно выделить радиовещательные (обычно называемые радиоприемниками или приемниками), телевизионные (телевизоры), профессиональные, специальные радиоприемные устройства. К профессиональным относятся магистральные радиоприемные устройства декаметрового диапазона, радиорелейных и спутниковых линий связи. Среди радиоприемных устройств специального назначения следует назвать, например, радиолокационные, радионавигационные, самолетные и т.д.

Cтраница 2


Радиопередающие устройства совре менных телеметрических систем выполняются чаще по многокаскадной схеме, включающей в общем случае задающий генератор, буферный каскад, умножитель частоты, усилитель высокой частоты, усилитель мощности и модулятор. Вместе с тем в телеметрических системах широко распространены двухкаскадные стабилизированные кварцем передатчики, состоящие из задающего генератора и усилителя мощности.  

Радиопередающие устройства являются первым звеном любой радиолинии. Полученные в передатчике колебания высокой частоты передаются в антенну и излучаются ею в свободное пространство в виде электромагнитных волн. Среда, в которой происходит распространение радиоволн, приемная антенна и радиоприемник являются последующими звеньями радиолинии.  


Радиопередающее устройство предназначается для создания электромагнитного излучения.  

Радиопередающие устройства (РПДУ) связи и вещания являются типичным примером наземных стационарных РЭС. Они выполнены в виде комплекса, предназначенного для преобразования энергии источников питания в энергию радиочастотных колебаний и управления последними с целью передачи информации в открытое пространство. Стационарные РПДУ являются устройствами не только информационными, но и энергетическими, поэтому в их состав входят не только усилители и модуляторы, но и генераторы, а также устройства питания, охлаждения, контроля. Понижение до 6 кВ осуществляется специальной подстанцией.  

Радиопередающее устройство с частотной модуляцией излучает в пространство электромагнитные колебания, амплитуда которых постоянна, а частота изменяется по закону передаваемых сигналов.  

Радиопередающие устройства предназначены для генерирования несущих колебаний.  

Радиопередающие устройства предназначены для генерации и излучения колебаний высокой частоты.  

Радиопередающее устройство состоит из генератора, модулятора и источников питания. Перечисленные блоки состоят из узлов и деталей, выполняющих вполне определенные функции. Для обеспечения работы такого устройства необходимо входящие в него блоки и узлы соединить таким образом, чтобы соблюдался определенный порядок и последовательность их включения, защита от перегрузок и аварийных режимов. При этом должна быть предусмотрена сигнализация для контроля за работой наиболее важных блоков и узлов. Схемы соединений в блоках и между ними должны гарантировать безопасность обслуживающего персонала.  

Радиопередающим устройством, или передатчиком, называется устройство, в котором происходят процессы генерации и управления током высокой частоты.    

Современное радиопередающее устройство состоит из следующих основных элементов (рис. 7 - 1): 1) задающего генератора, основное назначение которого заключено в создании стабильных по частоте высокочастотных колебаний; 2) усилителя, усиливающего мощность колебаний задающего генератора до необходимого уровня; 3) устройства управления высокочастотными колебаниями (модулятор); 4) антенно-фидерного устройства; 5) источника питания. Все каскады передатчика, кроме задающего генератора, относятся к классу генераторов с внешним возбуждением.  

Современные радиопередающие устройства, как правило, предназначаются для работы не на одной фиксированной частоте, а в широком диапазоне частот. При этом на какой бы частоте ни работал передатчик, он должен обеспечивать требуемую по техническому заданию стабильность частоты.  

Импульсные радиопередающие устройства широко используются в важнейших областях науки и техники, а также в самых различных отраслях народного хозяйства.  

Конструкция радиопередающего устройства во многом зависит от технологии изготовления отдельных каскадов и элементов, составляющих его схему. При этом один или несколько каскадов объединяют в общий модуль, который и герметизируют. Аналогично реализуют и большинство устройств пассивного типа (см. гл. Конструкция jiepe - датчика должна не только предусматривать объединение таких модулей, прочное их закрепление, хорошее заземление на достаточно большой поверхности, но и, что не менее важно, обеспечивать нормальный тепловой режим всех каскадов, в первую очередь включающих полупроводниковые приборы.  

Функциональная схема современного радиопередающего устройства

Любая система радиосвязи включает в себя радиопередающее устройство, функции которого заключаются в преобразовании энергии постоянного тока источников питания в электромагнитные колебания и управлении этими колебаниями.

Обобщенная структурная схема современного радиопередатчика изображена на рис. 5.

Рисунок 5 – Обобщенная структурная схема современного радиопередающего устройства

Рассмотрим кратко назначение ее отдельных элементов. Задающий генератор (или возбудитель) генерирует высокостабильные радиочастотные колебания в заданном диапазоне частот. Далее эти колебания усиливаются в предварительных каскадах и поступают на оконечный усилитель мощности. Часто предварительные каскады передатчика работают в режиме умножения частоты радиочастотных колебаний. Это облегчает требования к возбудителю и повышает устойчивость работы передатчика, поскольку усиление ведется на различных частотах. Усилитель мощности обеспечивает на выходе антенны (или фидера) заданную мощность РЧ колебаний. Антенная система излучает РЧ колебания в пространство. Для управления ВЧ колебаниями служит модуляционное (или манипуляционное) устройство. Если передатчик работает с амплитудной модуляцией, то модуляционное устройство воздействует на оконечный или предварительный каскады. Если передатчик работает с частотной модуляцией (манипуляцией), то модуляция (манипуляция) осуществляется в задающем генераторе. Устройство охлаждения ламп и контуров поддерживает заданный тепловой режим передатчика, а устройство блокировки и сигнализации дает информацию о режиме работы передатчика и обеспечивает его включение и выключение, безопасность обращения с ним обслуживающего персонала. Источники питания необходимы для подачи заданных питающих напряжений на лампы или транзисторы передатчика.

Классификация радиопередающих устройств

Радиопередатчики классифицируются:

– по назначению – связные, радиовещательные, телевизионные, радиолокационные, радионавигационные, телеметрические и т.д.;

– по мощности – маломощные (до 100 Вт), средней мощности (до 10 кВт), мощные (до 1 МВт) и сверхмощные (свыше 1 МВт);

– по роду работы (виду излучения) – телеграфные, телефонные, однополосные, импульсные и т.д.;

– по способу транспортировки – стационарные и подвижные (переносные, автомобильные, корабельные, самолетные и т.д.).

Классификация приемопередатчиков по диапазону частот в соответствии рекомендациями Международного Союза Электросвязи (МСЭ) приведена в таблице 1.

Таблица 1 – Классификация приемопередатчиков по диапазонам частот

Основные показатели качества и параметры радиопередающих устройств

Параметры любого радиопередающего устройства должны удовлетворять требованиям ГОСТов и Рекомендациям МСЭ. Одним из основных параметров передатчика, определяющего во многом дальность действия радиолинии, является его мощность. В зависимости от назначения радиопередатчика его мощность лежит в пределах от долей ватта (передатчики носимых радиостанций) до нескольких мегаватт (коротковолновые радиовещательные станции).

Исключительно важный параметр передатчика – стабильность его частоты. Современные радиопередатчики имеют относительную нестабильность частоты около 10 –6 …10 –7 . Иногда требуется и более высокая стабильность частоты, например для передатчиков, работающих в сетях синхронного радиовещания, в системах радионавигации и радиоопределения.

Высокая стабильность частоты передатчика повышает помехозащищенность радиолинии (поскольку позволяет сузить полосу пропускания приемного устройства), позволяет увеличивать число станций, работающих в заданном диапазоне частот без взаимных помех (улучшает электромагнитную совместимость). Существуют международные рекомендации на допустимые отклонения частоты радиопередатчиков всех категорий и назначений.

Важным параметром передатчика является его коэффициент полезного действия (КПД) – отношение мощности в нагрузке к полной мощности, потребляемой от источника питания. Коэффициент полезного действия маломощных передатчиков определяет во многом его габаритные размеры и массу, а КПД сверхмощных передатчиков, кроме того, – стоимость их сооружения и эксплуатации. Высокий КПД позволяет повысить экономичность системы охлаждения, а также увеличить надежность работы передатчика.

Не меньшее значение имеют электроакустические показатели радиопередатчика, такие как требования к коэффициенту модуляции (для передатчиков с АМ), индексу модуляции (для передатчиков с ЧМ и ФМ), нелинейным искажениям, амплитудно-частотной характеристике (АЧХ), уровню фона и шума и т.д.

В связи с ростом числа радиостанций и повышением требований к качеству передачи информации электроакустические и технические показатели радиопередатчиков постоянно совершенствуются. Значительного повышения качественных показателей радиопередатчиков, повышения оперативности их работы удается достигнуть с помощью микропроцессорных устройств в системе телеуправления и контроля.