Временные характеристики цепей. Временные характеристики линейных цепей Допустим, что к цепи приложено ступенчатое воздействие, изображение которого является функция

1. ЗАДАНИЕ

Схема исследуемой цепи [рис. 1] №22, в соответствии с вариантом задания 22 - 13 - 5 - 4. Параметры элементов цепи: L = 2 мГн, R = 2кОм, C = 0,5 нФ.

Внешнее воздействие задано функцией: , где а вычисляется по формуле (1) и равно .

Рисунок 1. Электрическая схема заданной цепи

Необходимо определить:

а) выражение для первичных параметров заданного четырехполюсника в виде функции частоты;

б) комплексный коэффициент передачи по напряжению четырехполюсника в режиме холостого хода на зажимах ;

в) амплитудно-частотную и фазочастотную характеристики коэффициента передачи по напряжению;

г) операторный коэффициент передачи по напряжению четырехполюсника в режиме холостого хода на зажимах ;

д) переходную характеристику цепи ;

е) импульсную характеристику цепи ;

ж) отклик цепи на заданное входное воздействие при отключенной нагрузке.

2. РАСЧЕТНАЯ ЧАСТЬ

.1 Определение первичных параметров четырехполюсника

Для определения Z - параметров четырехполюсника составим уравнения электрического равновесия цепи по методу контурных токов используя комплексную схему замещения цепи [рис. 2]:


Рисунок 2. Комплексная схема замещения заданной электрической цепи

Выбирая направление обхода контуров, как указано на [рис. 2], и учитывая, что

запишем контурные уравнения цепи:


Подставим в полученные уравнения значения и :

(2)

Полученные уравнения (2) содержат только токи и напряжения на входных и выходных зажимах четырехполюсника и могут быть преобразованы к стандартному виду записи основных уравнений четырехполюсника в форме Z:

(3)

Преобразуя уравнения (2) к виду (3), получим:


Сравнивая полученные уравнения с уравнениями (3), получаем:

четырехполюсник напряжение холостой амплитудный


2.2 Определение коэффициента передачи по напряжению в режиме холостого хода на выходе

Комплексный коэффициент передачи по напряжению от зажимов к зажимам в режиме холостого хода () на выходе найдем, используя полученные в пункте 2.1 выражения для первичных параметров:

2.3 Определение амплитудно-частотной и фазочастотной характеристик коэффициента передачи по напряжению

Рассмотрим полученное выражение для как отношение двух комплексных чисел, находим выражение для АЧХ и ФЧХ.

АЧХ будет иметь вид:


Из формулы (4) следует, что ФЧХ будет иметь вид:


Где, рад/с находится из уравнения

Графики АЧХ и ФЧХ приведены на следующей странице. [рис.3, рис.4]

Рисунок 3 . Амплитудно-частотная характеристика

Рисунок 4. Фазочастотная характеристика

Предельные значения и при для контроля вычислений полезно определить, не прибегая к расчетным формулам:

· учитывая, что сопротивление индуктивности при постоянном токе равно нулю, а сопротивление емкости бесконечно велико, в схеме [см. рис1] можно разорвать ветвь, содержащую емкость, и заменить индуктивность перемычкой. В полученной схеме и , т.к входное напряжение совпадает по фазе с напряжением на зажимах ;

· на бесконечно большой частоте ветвь, содержащую индуктивность, можно разорвать, т.к. сопротивление индуктивности стремится к бесконечности. Не смотря на то, что сопротивление емкости стремится к нулю, ее нельзя заменить перемычкой, так как напряжение на емкости является откликом. В полученной схеме [см. рис.5], при , , входной ток опережает по фазе входное напряжение на , а напряжение выходе совпадает по фазе с напряжением на входе, поэтому .

Рисунок 5. Электрическая схема заданной цепи при .

2.4 Определение операторный коэффициент передачи по напряжению четырехполюсника в режиме холостого хода на зажимах

Операторная схема замещения цепи по внешнему виду не отличается от комплексной схемы замещения [рис.2], так как анализ электрической цепи проводится при нулевых начальных условиях. В этом случае для получения операторного коэффициента передачи по напряжению достаточно в выражении для комплексного коэффициента передачи заменить оператором :

Преобразуем последнее выражение так, чтобы коэффициенты при старших степенях в числителе и знаменателе были равны единице:


Функция имеет два комплексно-сопряженных полюса: ; и один вещественный нуль: .

Рисунок 6. Полюсно-нулевая диаграмма функции

Полюсно-нулевая диаграмма функции приведена на рис.6. Переходные процессы в цепи имеют колебательный затухающий характер.

2.5 Определение переходной и импульсной характеристик цепи

Операторное выражение позволяет получить изображения переходной и импульсной характеристик. Переходную характеристику удобно определять, используя связь между изображением по Лапласу переходной характеристики и операторным коэффициентом передачи:

(5)

Импульсная характеристика цепи может быть получена из соотношений:

(6)

(7)

Используя формулы (5) и (6), запишем выражения изображений импульсной и переходной характеристик:


Преобразуем изображения переходной и импульсной характеристик к виду, удобному для определения оригиналов временных характеристик с помощью таблиц преобразований Лапласа:

(8)

(9)

Таким образом, все изображения сведены к следующим операторным функциям, оригиналы которых приведены в таблицах преобразований Лапласа:

(12)

Учитывая, что для данного рассматриваемого случая , , , найдем значения постоянных для выражения (11) и значения постоянных для выражения (12).

Для выражения (11):


И для выражения (12):


Подставляя полученные значения в выражения (11) и (12), получим:

После преобразований получаем окончательные выражения для временных характеристик:

Переходной процесс в данной цепи заканчивается после коммутации за время , где - определяется как обратная величина к абсолютной минимальной величине вещественной части полюса . Так как , то время затухания равно (6 - 10) мкс. Соответственно, выбираем интервал расчета численных значений временных характеристик . Графики переходной и импульсной характеристик приведены на рис.7 и 8.

Для качественного объяснения вида переходной и импульсной характеристик цепи к входным зажимам независимый источник напряжения . Переходная характеристика цепи численно совпадает с напряжением на выходных зажимах при воздействии на цепь единичного скачка напряжения при нулевых начальных условиях. В первоначальный момент времени после коммутации напряжение на емкости равно нулю, так как по законам коммутации при конечном значении амплитуды скачка напряжение на емкости скачком измениться не может. Следовательно, , то есть . При напряжение на входе можно считать постоянным и равным 1В, то есть . В цепи, соответственно, могут протекать только постоянные токи, поэтому емкость можно заменить разрывом, а индуктивность перемычкой, следовательно в преобразованной таким образом цепи , то есть . Переход от начального состояния к установившемуся происходит в колебательном режиме, что объясняется процессом периодического обмена энергией между индуктивностью и емкостью. Затухание колебаний происходит из-за потерь энергии на сопротивлении R.

Рисунок 7. Переходная характеристика .

Рисунок 8. Импульсная характеристика .

Импульсная характеристика цепи численно совпадает с выходным напряжением при подаче на вход единичного импульса напряжения . В течении действия единичного импульса емкость заряжается до своего максимального значения, а напряжение на емкости становится равным

.

При источник напряжения может быть заменен короткозамкнутой перемычкой, а в цепи возникает затухающий колебательный процесс обмена энергией между индуктивностью и емкостью. На начальном этапе емкость разряжается, ток емкости плавно уменьшается до 0, а ток индуктивности растет до своего максимального значения при . Затем ток индуктивности, плавно уменьшаясь, перезаряжает емкость в противоположном направлении и т.д. При вследствие рассеяния энергии в сопротивлении все токи и напряжения цепи стремятся к нулю. Таким образом, затухающий с течением времени колебательный характер напряжения на емкости и объясняет вид импульсной характеристики, причем и .

Корректность расчета импульсной характеристики подтверждается качественно тем, что график на рис.8 переходит через 0 в те моменты времени, когда график на рис.7 имеет локальные экстремумы, а максимумы совпадают по времени с точками перегиба графика . А также корректность расчетов подтверждается тем, что графики и , в соответствии с формулой (7), совпадают. Для проверки правильности нахождения переходной характеристики цепи найдем эту характеристику при воздействии на цепь единичного скачка напряжения классическим методом:

Найдем независимые начальные условия ():


Найдем зависимые начальные условия ():

Для этого обратимся к рис.9, на котором изображена схема цепи в момент времени , тогда получим:


Рисунок 9. Схема цепи в момент времени

Найдем принужденную составляющую отклика:

Для этого обратимся к рис.10, на котором изображена схема цепи при после коммутации. Тогда получаем, что

Рисунок 10. Схема цепи при .

Составим дифференциальное уравнение:

Для этого сначала запишем уравнение баланса токов в узле по первому закону Кирхгофа и запишем некоторые уравнения на основании второго законов Кирхгоффа:

Используя компонентные уравнения преобразуем первое уравнение:


Выразим все неизвестные напряжения через :


Теперь дифференцируя и преобразуя получаем дифференциальное уравнение второго порядка:


Подставим известные константы и получим:


5. Запишем характеристическое уравнение и найдем его корни:
к нулю. Постоянная времени и квазипериод колебания временных характеристик совпадают с результатами, полученными из анализа операторного коэффициента передачи; АЧХ рассматриваемой цепи близка к АЧХ идеального фильтра нижних частот с граничной частотой .

Список использованной литературы

1. Попов В.П. Основы теории цепей: Учебник для вузов - 4-ое изд., испр. - М.: Высш. шк., 2003. - 575с.: ил.

Корн Г., Корн Т., Справочник по математике для инженеров и учащихся вузов. М.: Наука, 1973, 832 с.

Единичные функции и их свойства Важное место в теории линейных цепей занимает исследование реакции этих цепей на идеализированные внешние воздействия, описываемые так называемыми единичными функциями. Единичной ступенчатой функцией (функцией Хевисайда) называется функция: График функции 1(t-t 0) имеет вид ступеньки или скачка, высота которого равна 1. Скачок такого типа будем называть единичным.

Единичные функции и их свойства В связи с тем, что произведение любой ограниченной функции времени f(t) на 1(t-t 0) равно нулю при t

Единичные функции и их свойства Если при t=t 0 в цепь включается источник гармонического тока или напряжения то внешнее воздействие на цепь можно представить в виде: Если внешнее воздействие на цепь в момент времени t=t 0 скачкообразно изменяется от одного фиксированного значения X 1 до другого X 2, то

Единичные функции и их свойства Внешнее воздействие на цепь, имеющее форму прямоугольного импульса высотой X и длительностью tи (рис.), можно представить в виде разности двух одинаковых скачков сдвинутых во времени на tи

Единичные функции и их свойства Рассмотрим прямоугольный импульс длительностью и высотой 1/ t (рис.). Очевидно, что площадь этого импульса равна 1 и не зависит от t. При уменьшении длительности импульса его высота возрастает, причем при t→ 0 она стремится к бесконечности, но площадь остается равной 1. Импульс бесконечно малой длительности, бесконечно большой высоты, площадь которого равна 1, будем называть единичным импульсом. Функция, определяющая единичный импульс, обозначается (t-t 0) и называется δ-функцией или функцией Дирака.

Единичные функции и их свойства с помощью δ-функции можно выделять значения функции f(t) в произвольные моменты времени t 0. Эту особенность δфункции обычно называют фильтрующим свойством. При t 0 =0 операторные изображения единичных функций имеют особенно простой вид:

Переходная и импульсная характеристики линейных цепей Переходной характеристикой g(t-t 0) линейной цепи, не содержащей независимых источников энергии, называется отношение реакции этой цепи на воздействие неединичного скачка тока или напряжения к высоте этого скачка при нулевых начальных условиях: Переходная характеристика цепи численно равна реакции цепи на воздействие единичного скачка тока или напряжения. Размерность переходной характеристики равна отношению размерности отклика к размерности внешнего воздействия, поэтому переходная характеристика может иметь размерность сопротивления, проводимости или быть безразмерной величиной.

Переходная и импульсная характеристики линейных цепей Импульсной характеристикой h(t-t 0) линейной цепи, не содержащей независимых источников энергии, называется отношение реакции этой цепи на воздействие бесконечно короткого импульса бесконечно большой высоты и конечной площади к площади этого импульса при нулевых начальных условиях: Импульсная характеристика цепи численно равна реакции цепи на воздействие единичного импульса. Размерность импульсной характеристики равна отношению размерности отклика цепи к произведению размерности внешнего воздействия на время.

Переходная и импульсная характеристики линейных цепей Подобно комплексной частотной и операторной характеристикам цепи, переходная и импульсная характеристики устанавливают связь между внешним воздействием на цепь и ее реакцией, однако в отличие от комплексной частотной и операторной характеристик аргументом переходной и импульсной характеристик является время t, а не угловая ω или комплексная p частота. Так как характеристика цепи, аргументом которых является время, называются временными, а аргументом которых является частота (в том числе и комплексная) - частотными характеристиками, то переходная и импульсная характеристики относятся к временным характеристикам цепи.

Переходная и импульсная характеристики линейных цепей Таким образом, импульсная характеристика цепи hkv(t) - это функция, изображение которой, по Лапласу, представляет собой операторную характеристику цепи Hkv(p), а переходная характеристика цепи gkv(t) − функция, операторное изображение которой равно Hkv(p)/p.

Определение реакции цепи на произвольное внешнее воздействие Внешнее воздействие на цепь представляют в виде линейной комбинации однотипных элементарных составляющих: а реакцию цепи на такое воздействие находят в виде линейной комбинации частичных реакций на воздействие каждой из элементарных составляющих внешнего воздействия в отдельности: В качестве элементарных составляющих можно выбирать внешние воздействия, наиболее широкое распространение получили элементарные (пробные) воздействия в виде гармонической функции времени, единичного скачка и единичного импульса.

Определение реакции цепи на произвольное внешнее воздействие по ее переходной характеристике Рассмотрим произвольную линейную электрическую цепь, не содержащую независимых источников энергии, переходная характеристика g(t) которой известна. Пусть внешнее воздействие на цепь задается в виде произвольной функции x=x(t), равной нулю при t

Определение реакции цепи на произвольное внешнее воздействие по ее переходной характеристике Функцию x(t) можно приближенно представить в виде суммы неединичных скачков или, что то же самое, в виде линейной комбинации единичных скачков, смещенных один относительно другого на: В соответствии с определением переходной характеристики реакция цепи на воздействие неединичного скачка, приложенного в момент времени t= k, равна произведению высоты скачка на переходную характеристику цепи g(t- k). Следовательно, реакция цепи на воздействие, представляемое суммой неединичных скачков (6. 114), равна сумме произведений высот скачков на соответствующие переходные характеристики:

Определение реакции цепи на произвольное внешнее воздействие по ее переходной характеристике Очевидно, что точность представления входного воздействия в виде суммы неединичных скачков, как и точность представления реакции цепи, возрастает с уменьшением шага разбиения по времени. При → 0 суммирование заменяется интегрированием: Выражение известно под названием интеграла Дюамеля (интеграла наложения). Используя это выражение можно найти точное значение реакции цепи на заданное воздействие x=x(t) в любой момент времени t после коммутации. Интегрирование в осуществляется на промежутке t 0

Определение реакции цепи на произвольное внешнее воздействие по ее переходной характеристике С помощью интеграла Дюамеля можно определить реакцию цепи на заданное воздействие и в том случае, когда внешнее воздействие на цепь описывается кусочно-непрерывной функцией, т. е. функцией, которая имеет конечное число конечных разрывов. В этом случае интервал интегрирования необходимо разбить на несколько промежутков в соответствии с интервалами непрерывности функции x=x(t) и учесть реакцию цепи на конечные скачки функции x=x(t) в точках разрыва.


Временной характеристикой цепи называется функция вре­мени, значения которой численно определяются реакцией цепи на типовое воздействие. Реакция цепи на заданное типовое воздей­ствие зависит лишь от схемы цепи и параметров ее элементов и, следовательно, может служить ее характеристикой. Временные характеристики определяют для линейных цепей, не содержащих независимых источников энергии, и при нулевых начальных усло­виях. Временные характеристики зависят от вида заданного типо­вого воздействия. Всвязи с этим их делят на две группы: переход­ные и импульсные временные характеристики.

Переходная характеристика, или переходная функция, опреде­ляется реакцией цепи на воздействие единичной ступенчатой функ­ции. Она имеет несколько разновидностей (табл. 14.1).

Если воздействие задано в виде единичного скачка напряже­ния и реакцией является также напряжение, то переходная харак­теристика оказывается безразмерной, численно равной напряже­нию на выходе цепи и называется переходной функцией или ко­эффициентом передачи K U (t) по напряжению. Если же выходной величиной служит ток, то переходная характеристика имеет раз­мерность проводимости, численно равна этому току и называется переходной проводимостью Y(t). Аналогично при воздействии в виде тока и реакции в виде напряжения переходная функция имеет размерность сопротивления и называется переходным сопро­тивлением Z(t). Если же при этом выходной величиной является ток, то переходная характеристика безразмерна и называется переходной функцией или коэффициентом передачи K I (t) no току.

В общем случае переходную характеристику любого вида обо­значают через h(t). Переходные характеристики легко опреде­ляются расчетом реакции цепи на единичное ступенчатое воздей­ствие, т. е. расчетом переходного процесса при включении цепи на постоянное напряжение 1 В или на постоянный ток 1 А.

Пример 14.2.

Найти временные перехо дные характеристики простой rC-цепи (рис. 14.9, а), если во здействиями являются напряжения.


1. Для определения переходных характеристик рассчитаем переходный про­цесс при поступлении на вход цепи напряжения u(t) - 1 (t). Этому соответствует включение цепи в момент t=0 на источник постоянной э. д. с. е 0 =1 В (рис. 14.9,6). При этом:

а) ток в цепи определяется выражением

поэтому переходной проводимостью является

б) напряжение на емкости

поэтому переходная функция по напряжению

Импульсная характеристика, или импульсная переходная функ­ция, определяется реакцией цепи на воздействие δ(t)-функции. Как и переходная характеристика, она имеет несколько разновид­ностей, определяемых видом воздействия и реакции - напряже­нием или током. B общем случае импульсную характеристику обозначают через a(t).


Установим связь между импульсной характеристикой и пере­ходной характеристикой линейной цепи. Для этого определим сначала реакцию цепи на импульсное воздействие малой длитель­ности t И =Δt, представив его наложением двух ступенчатых функций:

B соответствии с принципом наложения реакция цепи на такое воздействие определяется с помощью переходных характеристик:

При малых Δt можно записать

где S и =U m Δƒ - площадь импульса.


При Δt 0 и U m полученное выражение описывает ре­акцию цепи на δ(t)-функцию, т. е, определяет импульсную харак­теристику цепи:

С учетом этого реакция линейной цепи на импульсное воздей­ствие малой длительности может быть найдена как произведение импульсной функции на площадь импульса:

Это равенство лежит в основе экспериментального определения импульсной функции. Оно тем точнее, чем меньше длительность импульса.

Таким образом, импульсная характеристика представляет про­изводную от переходной характеристики:

Здесь учтено, что h(t)δ(t)=h(0)δ(t), а умножение h(t) на l(t) эквивалентно указанию на то, что значение функции h(t) при t<0 равно нулю.

Интегрируя полученные выражения, легко убедиться, что

Равенства (14.17) и (14.19) являются следствием ра­венств (14.14) и (14.15). Так как импульсные харак­теристики имеют размерность соответствующей переходной харак­теристики, поделенной на время. Для расчета импульсной харак­теристики можно воспользоваться выражением (14.19), т. е. рас­считать ее с помощью переходной характеристики.

Пример 14.3.

Найти импульсные характеристики простой rC-цепи (см. рис. 14.9, а). Решение.

Используя выражения для переходных характеристик, полученные в при­мере 14.2, с помо щью выражения (14.19) находим импульсные характеристики;

Временные характеристики типовых звеньев приведены в табл. 14.2.



Расчет временных характеристик обычно производится в сле­дующем порядке:

определяются точки приложения внешнего воздействия и его вид (ток или напряжение), а также интересующая выходная ве­личина - реакция цепи (ток или напряжение на каком-то ее участке); нужная временная характеристика рассчитывается как реак­ция цепи на соответствующее типовое воздействие: 1(t) или δ(t),

Ранее мы рассматривали частотные характеристики, а временные характеристики описывают поведение цепи во времени при заданном входном воздействии. Таких характеристик всего две: переходная и импульсная.

Переходная характеристика

Переходная характеристика - h(t) - есть отношение реакции цепи на входное ступенчатое воздействие к величине этого воздействия при условии, что до него в цепи не было ни токов, ни напряжений.

Ступенчатое воздействие имеет график:

1(t) - единичное ступенчатое воздействие.

Иногда используют ступенчатую функцию, начинающуюся не в момент «0»:

Для расчёта переходной характеристики к заданной цепи подключают постоянный ЭДС (если входное воздействие - напряжение) или постоянный источник тока (если входное воздействие - ток) и рассчитывают заданный в качестве реакции переходный ток или напряжение. После этого делят полученный результат на величину источника.

Пример: найти h(t) для u c при входном воздействии в виде напряжения.

Пример : ту же задачу решить при входном воздействии в виде тока

Импульсная характеристика

Импульсная характеристика - g(t) - есть отношение реакции цепи на входное воздействие в виде дельта - функции к площади этого воздействия при условии, что до подключения воздействия в схеме не было ни токов, ни напряжений.

д(t) - дельта-функция, дельта-импульс, единичный импульс, импульс Дирака, функция Дирака. Это есть функция:


Рассчитывать классическим методом g(t) крайне неудобно, но так как д(t) формально является производной, то найти её можно из соотношения g(t)=h(0)д(t) + dh(t)/dt.

Для экспериментального определения этих характеристик приходится действовать приближённо, то есть создать точное требуемое воздействие невозможно.

На вход падают последовательность импульсов, похожих на прямоугольные:


t ф - длительность переднего фронта (время нарастания входного сигнала);

t и - длительность импульса;

К этим импульсам предъявляют определённые требования:

а) для переходной характеристики:

T паузы должно быть таким большим, чтобы к моменту прихода следующего импульса переходный процесс от окончания предыдущего импульса практически заканчивался;

T и должно быть таким большим, чтобы переходный процесс, вызванный возникновением импульса, тоже практически успевал заканчиваться;

T ф должно быть как можно меньше (так, чтобы за t ср состояние цепи практически не менялось);

X m должна быть с одной стороны такой большой, чтобы с помощью имеющейся аппаратуры можно было бы зарегистрировать реакцию цепи, а с другой: такой маленькой, чтобы исследуемая цепь сохраняла свои свойства. Если всё это так, регистрируют график реакции цепи и изменяют масштаб по оси ординат в X m раз (X m =5В, ординаты поделить на 5).

б) для импульсной характеристики:

t паузы - требования такие же и к X m - такие же, к t ф требований нет (потому что даже сама длительность импульса t ф должна быть такой малой, чтобы состояние цепи практически не менялось. Если всё это так, регистрируют реакцию и изменяют масштаб по оси ординат на площадь входного импульса.

Итоги по классическому методу

Основным достоинством является физическая ясность всех используемых величин, что позволяет проверять ход решения с точки зрения физического смысла. В простых цепях удаётся очень легко получить ответ.

Недостатки: по мере возрастания сложности задачи быстро нарастает трудоёмкость решения, особенно на этапе расчёта начальных условий. Не все задачи удобно решать классическим методом (практически никто не ищет g(t), и у всех возникают проблемы при расчёте задач с особыми контурами и особыми сечениями).

До коммутации, .

Следовательно, по законам коммутации u c1 (0) = 0 и u c2 (0) = 0, но из схемы видно, что сразу после замыкания ключа: E= u c1 (0)+u c2 (0).

В таких задачах приходится применять особую процедуру поиска начальных условий.

Эти недостатки удаётся преодолеть в операторном методе.