Электронные компоненты что туда входит. Основные радиокомпоненты и их классификация

В статье вы узнаете о том, какие существуют радиодетали. Обозначения на схеме согласно ГОСТу будут рассмотрены. Начать нужно с самых распространенных - резисторов и конденсаторов.

Чтобы собрать какую-либо конструкцию, необходимо знать, как выглядят в реальности радиодетали, а также как они обозначаются на электрических схемах. Существует очень много радиодеталей - транзисторы, конденсаторы, резисторы, диоды и пр.

Конденсаторы

Конденсаторы -- это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, через него проходит без особых трудностей. Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости - это Фарад. Она очень большая. На практике, как правило, используются которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Переменные конденсаторы

Существует и такой вид приборов, у которых емкость изменяется (в данном случае за счет того, что имеются подвижные пластины). Емкость зависит от размеров пластины (в формуле S - это ее площадь), а также от расстояния между электродами. В переменном конденсаторе с воздушным диэлектриком например, благодаря наличию подвижной части удается быстро менять площадь. Следовательно, будет меняться и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько отличается. Резистор, например, на них изображается в виде ломаной кривой.

Постоянные конденсаторы

Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить самые популярные типы диэлектриков:

  1. Воздух.
  2. Слюда.
  3. Керамика.

Но это касается исключительно неполярных элементов. Существуют еще электролитические конденсаторы (полярные). Именно у таких элементов очень большие емкости - начиная от десятых долей микрофарад и заканчивая несколькими тысячами. Кроме емкости у таких элементов существует еще один параметр - максимальное значение напряжения, при котором допускается его использование. Данные параметры прописываются на схемах и на корпусах конденсаторов.

на схемах

Стоит заметить, что в случае использования подстроечных или переменных конденсаторов указывается два значения - минимальная и максимальная емкость. По факту на корпусе всегда можно найти некоторый диапазон, в котором изменится емкость, если провернуть ось прибора от одного крайнего положения в другое.

Допустим, имеется переменный конденсатор с емкостью 9-240 (измерение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составит 9 пФ. А при максимальном - 240 пФ. Стоит рассмотреть более детально обозначение радиодеталей на схеме и их название, чтобы уметь правильно читать технические документации.

Соединение конденсаторов

Сразу можно выделить три типа (всего существует именно столько) соединений элементов:

  1. Последовательное - суммарная емкость всей цепочки вычислить достаточно просто. Она будет в этом случае равна произведению всех емкостей элементов, разделенному на их сумму.
  2. Параллельное - в этом случае вычислить суммарную емкость еще проще. Необходимо сложить емкости всех входящих в цепочку конденсаторов.
  3. Смешанное - в данном случае схема разбивается на несколько частей. Можно сказать, что упрощается - одна часть содержит только параллельно соединенные элементы, вторая - только последовательно.

И это только общие сведения о конденсаторах, на самом деле очень много о них можно рассказывать, приводить в пример занимательные эксперименты.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции - хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода - в частности, сажи). Впрочем, можно нанести даже графит - эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя

Основная характеристика резистора - это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Постоянные резисторы

Что касается таких элементов, то можно выделить наиболее распространенные типы:

  1. Металлизированные лакированные теплостойкие - сокращенно МЛТ.
  2. Влагостойкие сопротивления - ВС.
  3. Углеродистые лакированные малогабаритные - УЛМ.

У резисторов два основных параметра - мощность и сопротивление. Последний параметр измеряется в Омах. Но эта единица измерения крайне мала, поэтому на практике чаще встретите элементы, у которых сопротивление измеряется в мегаомах и килоомах. Мощность измеряется исключительно в Ваттах. Причем габариты элемента зависят от мощности. Чем она больше, тем крупнее элемент. А теперь о том, какое существует обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут обозначаться по-разному.

На отечественных схемах резистор - это небольшой прямоугольник с соотношением сторон 1:3, его параметры прописываются либо сбоку (если расположен элемент вертикально), либо сверху (в случае горизонтального расположения). Сначала указывается латинская буква R, затем - порядковый номер резистора в схеме.

Переменный резистор (потенциометр)

Постоянные сопротивления имеют всего два вывода. А вот переменные - три. На электрических схемах и на корпусе элемента указывается сопротивление между двумя крайними контактами. А вот между средним и любым из крайних сопротивление будет меняться в зависимости от того, в каком положении находится ось резистора. При этом если подключить два омметра, то можно увидеть, как будет меняться показание одного в меньшую сторону, а второго - в большую. Нужно понять, как читать схемы радиоэлектронных устройств. Обозначения радиодеталей тоже не лишним окажется знать.

Суммарное сопротивление (между крайними выводами) останется неизменным. Переменные резисторы используются для регулирования усиления (с их помощью меняете вы громкость в радиоприемниках, телевизорах). Кроме того, переменные резисторы активно используются в автомобилях. Это датчики уровня топлива, регуляторы скорости вращения электродвигателей, яркости освещения.

Соединение резисторов

В данном случае картина полностью обратна той, которая была у конденсаторов:

  1. Последовательное соединение - сопротивление всех элементов в цепи складывается.
  2. Параллельное соединение - произведение сопротивлений делится на сумму.
  3. Смешанное - разбивается вся схема на более мелкие цепочки и вычисляется поэтапно.

На этом можно закрыть обзор резисторов и начать описывать самые интересные элементы - полупроводниковые (обозначения радиодеталей на схемах, ГОСТ для УГО, рассмотрены ниже).

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы - это один кристалл, на котором может находиться великое множество радиоэлементов - и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник - это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам - в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Диоды и стабилитроны

Полупроводниковый диод имеет всего два электрода: катод (отрицательный) и анод (положительный). Но какие же существуют особенности у этой радиодетали? Обозначения на схеме можете увидеть выше. Итак, вы подключаете источник питания плюсом к аноду и минусом к катоду. В этом случае электрический ток будет протекать от одного электрода к другому. Стоит отметить, что у элемента в этом случае крайне малое сопротивление. Теперь можно провести эксперимент и подключить батарею наоборот, тогда сопротивление току увеличивается в несколько раз, и он перестает идти. А если через диод направить переменный ток, то получится на выходе постоянный (правда, с небольшими пульсациями). При использовании мостовой схемы включения получается две полуволны (положительные).

Стабилитроны, как и диоды, имеют два электрода - катод и анод. В прямом включении этот элемент работает точно так же, как и рассмотренный выше диод. Но если пустить ток в обратном направлении, можно увидеть весьма интересную картину. Первоначально стабилитрон не пропускает через себя ток. Но когда напряжение достигает некоторого значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации. Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах - в виде треугольника, а у его вершины - черта, перпендикулярная высоте.

Транзисторы

Если диоды и стабилитроны можно иногда даже не встретить в конструкциях, то транзисторы вы найдете в любой (кроме У транзисторов три электрода:

  1. База (сокращенно буквой "Б" обозначается).
  2. Коллектор (К).
  3. Эмиттер (Э).

Транзисторы могут работать в нескольких режимах, но чаще всего их используют в усилительном и ключевом (как выключатель). Можно провести сравнение с рупором - в базу крикнули, из коллектора вылетел усиленный голос. А за эмиттер держитесь рукой - это корпус. Основная характеристика транзисторов - коэффициент усиления (отношение тока коллектора и базы). Именно данный параметр наряду с множеством иных является основным для этой радиодетали. Обозначения на схеме у транзистора - вертикальная черта и две линии, подходящие к ней под углом. Можно выделить несколько наиболее распространенных видов транзисторов:

  1. Полярные.
  2. Биполярные.
  3. Полевые.

Существуют также транзисторные сборки, состоящие из нескольких усилительных элементов. Вот такие самые распространенные существуют радиодетали. Обозначения на схеме были рассмотрены в статье.

Основным показателем совершенства электронной аппаратуры является плотность упаковки, т.е. количество элементов схемы в 1 см3 действующего устройства.

Технология изготовления интегральных схем обеспечивает плотность упаковки в несколько тысяч элементов в 1 см3 .

Резисторы

Резисторы являются наиболее распространенными элементами и имеют следующее условное графическое обозначение (УГО):

Резисторы изготавливаются из проводящего материала: графита, тонкой металлической пленки, провода с невысокой проводимостью.

Резистор характеризуется величиной сопротивления: R = U / I , а также мощностью, которую резистор рассеивает в пространство, допуском, температурным коэффициентом, уровнем шума. Промышленность выпускает резисторы с сопротивление от 0,01 Ом до 1012 Ом и мощностью от 1/8 до 250 Вт с допуском от 0,005% до 20%. Резисторы используются в качестве нагрузочных и токоограничительных сопротивлений, делителей напряжения, добавочных сопротивлений, шунтов.

Конденсаторы

Конденсатор - устройство с двумя выводами и обладающее свойством:

    где
  • С - емкость в фарадах;
  • U - напряжение в вольтах;
  • Q - заряд в кулонах.

УГО конденсатора следующее:

Промышленность выпускает керамические, электролитические и слюдяные конденсаторы с емкостью от 0,5 пФ до 1000 мкФ и максимальным напряжением от 3В до 10 кВ.

Конденсаторы используются в колебательных контурах, фильтрах, для разделения цепей постоянного и переменного тока, в качестве блокировочных элементов. В цепях переменного тока конденсатор ведет себя как резистор, сопротивление которого уменьшается с ростом частоты.

Катушки индуктивности

Катушка индуктивности - устройство, обладающее свойством:

U = L · dI / dt,

    где
  • L - индуктивность в генри (или мГн, или мкГн);
  • U - напряжение в вольтах;
  • dI/dt - скорость изменение тока.

УГО катушки индуктивности следующее:

Катушка индуктивности - свернутый в спираль изолированный проводник, обладающий значительной индуктивностью при относительно малой емкости и малом активном сопротивлении. Материалом сердечника служит обычно железо или феррит в виде бруска, тора.

В цепях переменного тока катушка ведет себя как резистор, сопротивление которого растет с увеличением частоты.

Трансформатор - это устройство, состоящие из двух индуктивно связанных катушек индуктивности, называемой первичной и вторичной обмоткой.

УГО трансформатора с магнитопроводом:

Коэффициент трансформации:

где w1 и w2 - число витков

Трансформаторы служат для преобразования переменных напряжений и токов, а также для изолирования от сети.

Полупроводниковые приборы

Действие полупроводниковых приборов основано на использовании свойств полупроводников.

Количество известных в настоящее время полупроводниковых материалов довольно велико. Для изготовления полупроводниковых приборов применяются простые полупроводниковые вещества - германий, кремний, селен - и сложные полупроводниковые материалы - арсенид галлия, фосфит галлия и другие. Значения удельного электрического сопротивления в чистых полупроводниковых материалах лежат от 0,65 Ом·м (германий) до 108 Ом·м (селен).

Полупроводники или полупроводниковые соединения бывают собственными (чистыми) и с примесью (легированными) В чистых полупроводниках концентрация носителей заряда - свободных электронов и дырок составляет лишь 1016 - 1018 на 1 см3 вещества.

Для снижения удельного сопротивления полупроводника и придания ему определенного типа электропроводности - электронной при преобладании свободных электронов или дырочной при преобладании дырок - в чистые полупроводники вносят определенные примеси. Такой процесс называется легированием. В качестве легирующих примесей используют элементы 3 и 5 групп периодической системы элементов Д. И. Менделеева. Легирующие элементы 3 группы создают дырочную электропроводность полупроводниковых материалов и называются акцепторным примесями, элементы 5 группы - электронную электропроводность называют донорными примесями.

Собственные полупроводники - это полупроводники, в которых нет примесей (доноров и акцепторов). При Т = 0 в собственном полупроводнике свободные носители заряда отсутствуют, а концентрация носителей заряда равна Nn = Np = 0 и он не проводит ток. При Т > 0 часть электронов забрасывается из валентной зоны в зону проводимости. Эти электроны и дырки могут свободно перемещаются по энергетическим зонам. На практике применяются легированные полупроводники. Удельное электрическое сопротивление легированного полупроводника существенно зависит от концентрации примесей. При концентрации примесей 1020 - 1021 на см3 вещества оно может быть снижено до 5 · 10-6 Ом·м для германия и 5 · 10-5 Ом·м для кремния.

При приложении электрического поля к легированному полупроводнику в нем протекает электрический ток.

Полупроводниковые резисторы

Полупроводниковым резистором называют полупроводниковый прибор с двумя выводами, в котором используется зависимость электронного сопротивления полупроводника от напряжения, температуры, освещенности и других управляющих параметров.

В полупроводниковых резисторах применяется полупроводник, равномерно легированный примесями. В зависимости от типа примесей и конструкции удается получить различные зависимости от управляющих параметров.

Линейный резистор - полупроводниковый резистор, в котором применяется слаболегированный материал типа кремния или арсенида галлия.

Удельное электрическое сопротивление такого полупроводника мало зависит от напряженности электрического поля и плотности электрического тока. Поэтому сопротивление линейного полупроводникового резистора остается практически постоянным в широком диапазоне напряжений и токов. Полупроводниковые линейные резисторы широко применяют в интегральных микросхемах.

Вольт-амперная характеристика линейного резистора

Нелинейные резистивные элементы

УГО нелинейного резистивного элемента показано на рисунке:

Ток I, протекающий через нелинейный элемент, напряжение U на нем. Зависимость U(I) или I(U) называется вольт-амперной характеристикой.

Варисторы

Резистивные элементы, сопротивления которых зависит от напряженности электрического поля, называются варисторами. Варисторы изготавливают из прессованных зерен карбида кремния. Электропроводимость материала, в основном, обусловлена пробоем оксидных пленок, покрывающих зерна. Она определяется напряженностью приложенного электрического поля, т.е. зависит от величины приложенного напряжения.

Условное графическое изображения варистора и его вольт-амперная характеристика показаны на рисунке:

Варисторы характеризуются номинальным напряжением Uном , номинальным значением тока Iном , а также коэффициентом нелинейности β. Этот коэффициент равен отношению статического сопротивления к дифференциальному в точке характеристики с номинальными значениями напряжения и тока:

,

где U и I - напряжение и ток варистора. Коэффициент нелинейности для различных типов варисторов в пределах 2 - 6

Термисторы

Большую группу нелинейных резистивных элементов представляют управляемые нелинейные элементы. К ним относятся терморезисторы (термисторы) - нелинейные резистивные элементы, вольт-амперные характеристики которых существенно зависят от температуры. В некоторых типах терморезисторов температура меняется за счет специального подогревателя. Терморезисторы выполняют или из металла (медь, платина), сопротивления которого существенно изменяется при изменении температуры, или из полупроводников. В полупроводниках терморезисторах зависимость сопротивления от температуры описывается аналитической функцией

.

Здесь R(T0 ) - значение статического сопротивления при температуре T0 = 293 К, где Т - абсолютная температура, а В - коэффициент. Условное графическое обозначение термистора, его температурная характеристика, вольт-амперная характеристика показана на рисунке:

Различают два типа терморезисторов: термистор, сопротивление которого с ростом температуры падает, и позистор, у которого с сопротивление с повышением температуры возрастает. Буквенное обозначение термистора с отрицательным температурным коэффициентом - ТР, а с положительным коэффициентом - ТРП. Температурный коэффициент ТКС = , где R1 - сопротивление при номинальной температуре, ΔR- изменение сопротивления при изменении температуры на величину Δt.

Конструктивно термисторы выполняют в виде бусин, шайб, дисков.

Фоторезисторы

Фоторезистор - это полупроводниковый резистор, сопротивление которого зависит от светового потока, падающего на полупроводниковый материал или от проникающего электромагнитного излучения. Наибольшее распространение получили фоторезисторы с положительным фотоэффектом (например, СФ2-8,СФ3-8). УГО такого элемента показано на рисунке:

В фоторезисторах сопротивление изменяется в результате облучения пластины из полупроводникового материала световым потоком в видимом, ультрафиолетовом или инфракрасном диапазоне. В качестве материала используется сульфиды таллия, теллура, кадмия, свинца, висмута.

Вольт-амперные характеристики фоторезисторов представляют собой линейные функции, угол наклона которых зависит от величины светового потока. В координатах I - U (ток по вертикали) угол, составляемый прямой с горизонтальной осью (ось напряжения), тем больше, чем больше световой поток. Темновое сопротивление резисторных оптронов составляет 107 - 109 Ом. В освещенном состоянии оно снижается до нескольких сотен Ом. Быстродействие их невелико и ограничивается значениями в несколько килогерц.

Магниторезисторы

Магниторезисторы - полупроводниковые материалы, электрическое сопротивление которых зависит от величины напряженности магнитного поля, действующего на материал. В качестве материала используется висмут, германий и др. Сопротивление магниторезистора описывается зависимостью

,

где R(0) - сопротивление при Н = 0; α - коэффициент, Н - напряженность магнитного поля, в которое помещен магниторезистор.

Полупроводниковые диоды

Полупроводниковые диоды являются одним из наиболее распространенных подклассов полупроводниковых приборов. Их отличает разнообразие основополагающих физических принципов, разнообразие используемых полупроводниковых материалов, многообразие конструктивных и технологических реализаций. Полупроводниковые диоды по функциональному назначению могут быть разделены на:

  1. Выпрямительные (включая столбы, мосты, матрицы), импульсные, стабилитроны, варикапы, управляемые вентили (тиристоры, симметричные тиристоры - симисторы, динисторы);
  2. СВЧ-диоды: детекторные, смесительные, параметрические, pin-диоды, лавинопролетные, туннельные, диоды Ганна;
  3. Оптоэлектронные: фотодиоды, светодиоды, ИК-излучатели, лазерные диоды на основе гетероструктур;
  4. Магнитодиоды.

Слаболегированные полупроводники используются для изготовления маломощных диодов, а сильнолегированные - для изготовления мощных и импульсивных диодов.

Основное значение для работы полупроводниковых диодов имеет электронно-дырочный переход, который для краткости называется р-n переходом.

Электронно-дырочный р-n переход

Электронно-дырочным, или р-n переходом, называют контакт двух полупроводников одного вида с различными типами проводимости (электронным и дырочным). Классическим примером р-n перехода являются: n-Si - p-Si , n-Ge - p-Ge .

В пограничном слое происходит рекомбинация (воссоединение) электронов и дырок. Свободные электроны из зоны полупроводника n-типа занимают свободные уровни в валентной зоне полупроводника p-типа. В результате вблизи границы двух полупроводников образуется слой, лишенный подвижных носителей заряда и поэтому обладающий высоким электрическим сопротивлением, так называемой запирающий слой. Толщина запирающего слоя обычно не превышает нескольких микрометров.

Расширению запирающего слоя препятствуют неподвижные ионы донорных и акцепторных примесей, которые образуют на границе полупроводников двойной электрический слой. Этот слой определяет контактную разность потенциалов (потенциальный барьер) на границе полупроводников. Возникшая разность потенциалов создает в запирающем слое электрическое поле, препятствующее как переходу электронов из полупроводника n-типа в полупроводник р-типа, так и переходу дырок в полупроводник n-типа. В то же время электроны могут свободно двигаться из полупроводника p-типа в полупроводник n-типа, точно так же как дырки из полупроводника n-типа в полупроводник р-типа. Таким образом, контактная разность потенциалов препятствует движению основных носителей заряда и не препятствует движению неосновных носителей заряда. Однако при движении через p-n-переход неосновных носителей (так называемый дрейфовый ток Iдр ) происходит снижение контактной разности потенциалов φк , что позволяет некоторой части основных носителей, обладающих достаточной энергией, преодолеть потенциальный барьер, обусловленный контактной разностью потенциалов φк . Появляется диффузный ток Iдиф , который направлен навстречу дрейфовому току Iдр , т.е. возникает динамическое равновесие при котором Iдр = Iдиф .

Если к p-n-переходу приложить внешнее напряжение, которое создает в запирающем слое электрическое поле напряженностью Евн , совпадающее по направлению с полем неподвижных ионов напряженностью Езап , это приведет лишь к расширению запирающего слоя, так как отведет от контактной зоны и положительные, и отрицательные носители заряда (дырки и электроны).

При этом сопротивление р-n-перехода велико, ток через него мал - он обусловлен движением неосновных носителей заряда. В этом случае ток называется обратным (дрейфовым), а р-n-переход закрытым.

При противоположной полярности источника напряжения внешнее электрическое поле направлено навстречу полю двойного электрического слоя, толщина запирающего слоя уменьшается и при напряжении 0,3 - 0,5 В запирающий слой исчезает. Сопротивление р-n-перехода резко снижается и возникает сравнительно большой ток. Ток при этом называют прямым (диффузионным), а переход открытым.

Сопротивление открытого р-n-перехода определяется только сопротивлением полупроводника.

Классификация диодов

Полупроводниковым диодом называют нелинейный электронный прибор с двумя электродами. В зависимости от внутренней структуры, типа, количества и уровня легирования внутренних элементов диода и вольт-амперной характеристики свойства полупроводниковых диодов бывают различными.

Условные графические обозначения некоторых типов диодов согласно отечественным стандартам и их графические изображения показаны в таблице:

Выпрямительные диоды

Предназначены для преобразования переменного тока в однополярный пульсирующий или постоянный ток. К таким диодам не предъявляют высоких требований к быстродействию, стабильности параметров, емкости p-n-переходов. Из-за большой площади p-n- перехода барьерная емкость диода может достигать десятков пикофарад.

На рисунке а показан p-n-переход, образующий диод, на рисунке б показано включение диода в прямом направлении, при котором через диод протекает ток Iпр . На рисунке в показано включение диода в обратном направлении при которм через диод протекает ток Iобр .

На рисунке а показано включение диода VD в цепь, питаемую синусоидальным источником ЭДС e, временная характеристика которого показана на рисунке б. На рисунке в показан график тока, протекающего через диод.

Основными параметрами выпрямительного диода являются:

  • Uобр.max - максимально допустимое напряжение, приложенное в обратном направлении, которое не нарушает работоспособности диода;
  • Iвп.ср - среднее за период значение выпрямленного тока;
  • Iпр.и - амплитудное значение импульсного тока при заданной длительности скважности импульса;
  • Iобр.ср - среднее за период значение обратного тока;
  • Uпр.ср - среднее за период значение прямого напряжения на диоде;
  • Pср - средняя за период мощность, рассеиваемая диодом;
  • rдиф - дифференциальное сопротивление диода.

Качественно вольт-амперные характеристики универсального кремниевого и германиевого диода представлены на рисунке а, а зависимости вольт-амперных характеристик универсального кремниевого диода для трех значений температуры показаны на рисунке б.

Для безопасной работы германиевого диода его температура не должна превышать 85°С. Кремниевые диоды могут работать при температуре до 150°С.

Импульсные диоды

Предназначены для работ в цепях с импульсными сигналами. Основным для них является режим переходных процессов. Для уменьшения длительности переходных процессов в самом приборе импульсные диоды имеют малые значение емкостей p-n-перехода, которые составляют значение от долей до единицы пикофарад.

Это достигается путем уменьшения площади p-n- перехода, что в свою очередь обуславливает малые значения допустимой мощности, рассеиваемой диодом. Основными характеристиками импульсных диодов являются:

  • Uпр.max - максимальное значение импульсного прямого напряжения;
  • Iпр.max - максимальное значение импульсного тока;
  • Cд - емкость диода;
  • tуст - время установления прямого напряжения диода;
  • tвост - время восстановления обратного сопротивления диода. Это интервал времени от момента прохождения тока через нуль до момента, когда обратный ток достигает заданной малой величины.

Стабилитроны

Для стабилизации напряжения в электрических схемах используются полупроводники диоды с особыми вольт-амперным характеристиками - стабилитроны. Вольт-амперная характеристика стабилитрона показана на рисунке. Обратная ветвь вольт-амперной характеристики свидетельствует о работе в режиме электрического пробоя и содержит участок между точками а и b, близкого к линейному и ориентированному вдоль оси токов. В указанном режиме при значительном изменении тока стабилитрона напряжение изменяется не значительно.

Этот участок для стабилитрона является рабочим. При изменении тока в пределах от Icт.min до Iст.max напряжение на диоде мало отличается от величины Uст .

Значение Iст.max ограничено максимально допустимой рассеиваемой мощностью стабилитрона. Минимальное значение тока стабилизации по модулю быть больше величины Icт.min , при котором стабилитрон сохраняет свои стабилизирующие свойства.

Промышленность выпускает широкий спектр стабилитронов с напряжением стабилизации от 1В до 180В.

Стабилитрон характеризуется следующими параметрами:

  • Uст - напряжение стабилизации;
  • Iст.max - максимальный ток стабилизации;
  • Icт.min - минимальный ток стабилизации;
  • rд - дифференциальное сопротивление на участке "ab";
  • ТКН - температурный коэффициент напряжения стабилизации.

Стабилитроны предназначены для стабилизации напряжений на нагрузке при изменяющемся напряжении во внешней цепи. Стабилитрон является быстродействующим прибором и хорошо работает в импульсных схемах.

Диоды Шотки

Диоды Шотки характеризуются низким падением напряжения на открытом диоде. Величина этого напряжения составляет величину порядка 0,3В, что значительно меньше, чем у обычных диодов. Кроме того, время восстановления обратного сопротивления ts составляет величину порядка 100пс, что значительно меньше, чем у обычных диодов. Кроме цифровых схем диоды Шотки применяются в схемах вторичных источников электропитания с целью снижения статических и динамических потерь в самих диодах: в выходных каскадах импульсивных источников питания, DC/DC конвекторах, в системах электропитания компьютеров, серверах, система связи и передачи данных.

Варикапы

Нелинейные конденсаторы, основанные на использование свойств электронно-дырочного p-n-перехода, относятся к варикапам. Варикап используется при приложении p-n-переходу обратного напряжения. Ширина p-n-перехода, а значит и его емкость, зависит от величины приложенного к p-n-переходу напряжения. Емкость такого конденсатора определяется при помощи выражения

В этом выражении - емкость при нулевом запирающем напряжении, S и l - площадь и толщина p-n-перехода, ε0 - диэлектрическая постоянная, ε0 = 8,85 · 10-12 Ф/М , εr - относительная диэлектрическая постоянная; φк - контактный потенциал (для германия 0,3..0,4 B и 0,7..0,8 B для кремния); |u| - модуль обратного напряжения, приложенного к p-n-переходу; n = 2 для резких переходов; n = 3 для главных переходов.

График зависимости С(u) показан на рисунке

Максимальное значение емкости варикап имеет при нулевом напряжении. При увеличении обратного смещения емкость варикапа уменьшается. Основным параметрами варикапа являются:

  • С - емкость при обратном напряжение 2 - 5 В;
  • КC = Cmax /Cmin - коэффициент перекрытия по емкости.

Обычно C = 10 - 500 пФ , КC = 5 - 20. Варикапы применяются в системах дистанционного управления, для автоматической подстройки частоты, в параметрических усилителях с малым уровнем собственных шумов.

Светодиоды

Светодиодом, или излучающим диодом, называется полупроводниковый диод, излучающий кванты света при протекании через него прямого тока.

По характеристике излучения светодиоды разделяются на две группы:

  • светодиоды излучением в видимой части спектра;
  • светодиоды с излучением в инфракрасной части спектра.

Схематическое изображение структуры светодиода и его УГО представлено на рисунке:

Областями применения светодиодов ИК-излучения являются оптоэлектронные устройства коммутации, оптические линии связи, система дистанционного управления. Наиболее распространенный в настоящее время инфракрасный источник - это светодиод на основе GaAs(λ = 0,9 мкм). Возможность создания экономичных и долговременных светодиодов, согласованных по спектру с естественным освещением и чувствительностью человеческого глаза, открывает новые перспективы для их нетрадиционного использования. Среди них использование светодиодов в транспортных многосекционных светофорах, индивидуальных микромощных лампочках освещения (при мощности 3 Вт световой поток составляет 85 лм), в осветительных приборах автомобилей.

Фотодиоды

В фотодиодах на основе p-n-переходов используется эффект разделения на границе электронно-дырочного перехода созданных оптическим излучением неосновных неравновесных носителей. Схематически фотодиод изображен на рисунке:

При попадании кванта света с энергией hγ в полосе собственного поглощения в полупроводнике возникает пара неравновесных носителей - электрон и дырка. При регистрации электрического сигнала необходимо зарегистрировать изменение концентраций носителя. Как правило, используется принцип регистрации неосновных носителей заряда.

При разомкнутой внешней цепи (SA разомкнут, R = ∞) для случая, когда внешнее напряжение отсутствует, ток через внешнюю цепь не протекает. В этом случае напряжение на выводах фотодиода будет максимальным. Эту величину VG называют напряжением холостого хода Vxx . Напряжение Vxx (фото ЭДС) можно также определить непосредственно, подключая к выводам фотодиода вольтметр, но внутреннее сопротивление вольтметра должно быть много больше сопротивления p-n-перехода. В режиме короткого замыкания (SA замкнут) напряжение на выводах фотодиода VG = 0. Ток короткого замыкания Iкз во внешней цепи равен фототоку Iф

Iкз = Iф

На рисунке показано семейство ВАХ фотодиода как при отрицательной, так и при положительной полярности фотодиода.

При положительных напряжениях VG ток фотодиода быстро возрастает (пропускное направление) с увеличением напряжения. При освещении же общий прямой ток через диод уменьшается, так как фототок направлен противоположно току от внешнего источника.

ВАХ p-n-перехода, располагаясь во 2 квадранте (VG > 0, I < 0), показывает, что фотодиод можно использовать как источник тока. На этом базируется принцип работы солнечных батарей на основе p-n-переходов (режим фотогенератора). Световая характеристика представляет собой зависимость величины фототока Iф от светового потока Ф, падающего на фотодиод. Сюда же относится и зависимость Vxx от величины светового потока. Количество электронно-дырочных пар, образующихся в фотодиоде при освещении, пропорционально количеству фотонов, падающих на фотодиод. Поэтому фототок будет пропорционален величине светового потока:

Iф = кФ,

где К - коэффициент пропорциональности, зависящий от параметров фотодиода.

При обратном смещении фотодиода ток во внешней цепи пропорционально световому потоку и не зависит от напряжения VG (режим фото-преобразователя). Фотодиоды являются быстродействующими приборами и работают на частотах 107 - 1010 Гц. Фотодиоды широко применяются в оптопарах "cветодиод-фотодиод"

Оптрон (оптопара)

Оптрон - полупроводниковый прибор, содержащий источник излучения и приемник излучения, объединенные в одном корпусе и связанные между собой оптически, электрически или одновременно обеими связями. Очень широко распространены оптроны, у которых в качестве приемника излучения используются фоторезистор, фотодиод, фототранзистор и фототиристор.

В резисторных оптронах выходное сопротивление при изменении режима входной цепи может изменяться в 107 ..108 раз. Кроме того, вольт-амперная характеристика фоторезистора отличается высокой линейностью и симметричностью, что и обусловливает широкую применимость резиновых оптопар в аналогичных устройствах. Недостатком резисторных оптронов является низкое быстродействие - 0,01..1 c.

В цепях передачи цифровых информационных сигналов применяются главным образом диодные и транзисторные оптроны, а для оптической коммутации высоковольтных сильноточных цепей - тиристорные оптроны. Быстродействие тиристорных и транзисторных оптронов характеризуется временем переключения, которое часто лежит в диапазоне 5..50 мкс. Для некоторых оптронов это время меньше. Рассмотрим несколько подробнее оптопару светодиод-фотодиод.

Условное графическое обозначение оптопары показано на рисунке а:

Излучающий диод (слева) должен быть включен в прямом направлении, а фотодиод - в прямом (режим фотогенератора) или в обратном направлении (режим фотопреобразователя).

Содержание:

Начинающие радиолюбители нередко сталкиваются с такой проблемой, как обозначение на схемах радиодеталей и правильное прочтение их маркировки. Основная трудность заключается в большом количестве наименований элементов, которые представлены транзисторами, резисторами, конденсаторами, диодами и другими деталями. От того, насколько правильно прочитана схема, во многом зависит ее практическое воплощение и нормальная работа готового изделия.

Резисторы

К резисторам относятся радиодетали, обладающие строго определенным сопротивление протекающему через них электрическому току. Данная функция предназначена для понижения тока в цепи. Например, чтобы лампа светила менее ярко, питание на нее подается через резистор. Чем выше сопротивление резистора, тем меньше будет свечение лампы. У постоянных резисторов сопротивление остается неизменным, а переменные резисторы могут изменять свое сопротивление от нулевого значения до максимально возможной величины.

Каждый постоянный резистор обладает двумя основными параметрами - мощностью и сопротивлением. Значение мощности указывается на схеме не буквенными или цифровыми символами, а с помощью специальных линий. Сама мощность определяется по формуле: P = U x I, то есть равна произведению напряжения и силы тока. Данный параметр имеет важное значение, поскольку тот или иной резистор может выдержать лишь определенное значение мощности. Если это значение будет превышено, элемент просто сгорит, так как во время прохождения тока по сопротивлению происходит выделение тепла. Поэтому на рисунке каждые линии, нанесенные на резистор, соответствуют определенной мощности.

Существуют и другие способы обозначения резисторов на схемах:

  1. На принципиальных схемах обозначается порядковый номер в соответствии с расположением (R1) и значение сопротивления, равное 12К. Буква «К» является кратной приставкой и обозначает 1000. То есть, 12К соответствует 12000 Ом или 12 килоом. Если в маркировке присутствует буква «М», это указывает на 12000000 Ом или 12 мегаом.
  2. В маркировке с помощью букв и цифр, буквенные символы Е, К и М соответствуют определенным кратным приставкам. Так буква Е = 1, К = 1000, М = 1000000. Расшифровка обозначений будет выглядеть следующим образом: 15Е - 15 Ом; К15 - 0,15 Ом - 150 Ом; 1К5 - 1,5 кОм; 15К - 15 кОм; М15 - 0,15М - 150 кОм; 1М2 - 1,5 мОм; 15М - 15мОм.
  3. В данном случае используются только цифровые обозначения. Каждое включает в себя три цифры. Первые две из них соответствуют значению, а третья - множителю. Таким образом, к множителям относятся: 0, 1, 2, 3 и 4. Они означают количество нулей, добавляемых к основному значению. Например, 150 - 15 Ом; 151 - 150 Ом; 152 - 1500 Ом; 153 - 15000 Ом; 154 - 120000 Ом.

Постоянные резисторы

Название постоянных резисторов связано с их номинальным сопротивлением, которое остается неизменным в течение всего периода эксплуатации. Они различаются между собой в зависимости от конструкции и материалов.

Проволочные элементы состоят из металлических проводов. В некоторых случаях могут использоваться сплавы с высоким удельным сопротивлением. Основой для намотки проволоки служит керамический каркас. Данные резисторы обладают высокой точностью номинала, а серьезным недостатком считается наличие большой собственной индуктивности. При изготовлении пленочных металлических резисторов, на керамическое основание напыляется металл, обладающий высоким удельным сопротивлением. Благодаря своим качествам, такие элементы получили наиболее широкое распространение.

Конструкция угольных постоянных резисторов может быть пленочной или объемной. В данном случае используются качества графита, как материала с высоким удельным сопротивлением. Существуют и другие резисторы, например, интегральные. Они применяются в специфических интегральных схемах, где использование других элементов не представляется возможным.

Переменные резисторы

Начинающие радиолюбители нередко путают переменный резистор с конденсатором переменной емкости, поскольку внешне они очень похожи друг на друга. Тем не менее, у них совершенно разные функции, а также имеются существенные отличия в отображении на принципиальных схемах.

В конструкцию переменного резистора входит ползунок, вращающийся по резистивной поверхности. Его основной функцией является подстройка параметров, заключающаяся в изменении внутреннего сопротивления до нужного значения. На этом принципе основана работа регулятора звука в аудиотехнике и других аналогичных устройствах. Все регулировки осуществляются за счет плавного изменения напряжения и тока в электронных устройствах.

Основным параметром переменного резистора является сопротивление, способное изменяться в определенных пределах. Кроме того, он обладает установленной мощностью, которую должен выдерживать. Этими качествами обладают все типы резисторов.

На отечественных принципиальных схемах элементы переменного типа обозначаются в виде прямоугольника, на котором отмечены два основных и один дополнительный вывод, располагающийся вертикально или проходящих сквозь значок по диагонали.

На зарубежных схемах прямоугольник заменен изогнутой линией с обозначением дополнительного вывода. Рядом с обозначением ставится английская буква R с порядковым номером того или иного элемента. Рядом проставляется значение номинального сопротивления.

Соединение резисторов

В электронике и электротехнике довольно часто используются соединения резисторов в различных комбинациях и конфигурациях. Для большей наглядности следует рассматривать отдельный участок цепи с последовательным, параллельным и .

При последовательном соединении конец одного резистора соединяется с началом следующего элемента. Таким образом, все резисторы подключаются друг за другом, и по ним протекает общий ток одинакового значения. Между начальной и конечной точкой существует только один путь для протекания тока. С возрастанием количества резисторов, соединенных в общую цепь, происходит соответствующий рост общего сопротивления.

Параллельным считается такое соединение, когда начальные концы всех резисторов объединяются в одной точке, а конечные выходы - в другой точке. Течение тока происходит по каждому, отдельно взятому резистору. В результате параллельного соединения с увеличением числа подключенных резисторов, возрастает и количество путей для протекания тока. Общее сопротивление на таком участке уменьшается пропорционально количеству подключенных резисторов. Оно всегда будет меньше, чем сопротивление любого резистора, подключенного параллельно.

Чаще всего в радиоэлектронике используется смешанное соединение, представляющее собой комбинацию параллельного и последовательного вариантов.

На представленной схеме параллельно соединяются резисторы R2 и R3. Последовательное соединение включает в себя резистор R1, комбинацию R2 и R3 и резистор R4. Для того чтобы рассчитать сопротивление такого соединения, вся цепь разбивается на несколько простейших участков. После этого значения сопротивлений суммируются и получается общий результат.

Полупроводники

Стандартный полупроводниковый диод состоит из двух выводов и одного выпрямляющего электрического перехода. Все элементы системы объединяются в общем корпусе из керамики, стекла, металла или пластмассы. Одна часть кристалла называется эмиттером, в связи с высокой концентрацией примесей, а другая часть, с низкой концентрацией, именуется базой. Маркировка полупроводников на схемах отражает их конструктивные особенности и технические характеристики.

Для изготовления полупроводников используется германий или кремний. В первом случае удается добиться более высокого коэффициента передачи. Элементы из германия отличаются повышенной проводимостью, для которой достаточно даже невысокого напряжения.

В зависимости от конструкции, полупроводники могут быть точечными или плоскостными, а по технологическим признакам они бывают выпрямительными, импульсными или универсальными.

Конденсаторы

Конденсатор представляет собой систему, включающую два и более электродов, выполненных в виде пластин - обкладок. Они разделяются диэлектриком, который значительно тоньше, чем обкладки конденсатора. Все устройство имеет взаимную емкость и обладает способностью к сохранению электрического заряда. На простейшей схеме конденсатор представлен в виде двух параллельных металлических пластин, разделенных каким-либо диэлектрическим материалом.

На принципиальной схеме рядом с изображением конденсатора указывается его номинальная емкость в микрофарадах (мкФ) или пикофарадах (пФ). При обозначении электролитических и высоковольтных конденсаторов, после номинальной емкости указывается значение максимального рабочего напряжения, измеряемого в вольтах (В) или киловольтах (кВ).

Переменные конденсаторы

Для обозначения конденсаторов с переменной емкостью используются два параллельных отрезка, которые пересекает наклонная стрелка. Подвижные пластины, подключаемые в определенной точке схемы, изображаются в виде короткой дуги. Возле нее проставляется обозначение минимальной и максимальной емкости. Блок конденсаторов, состоящий из нескольких секций, объединяется с помощью штриховой линии, пересекающей знаки регулировки (стрелки).

Обозначение подстроечного конденсатора включает в себя наклонную линию со штрихом на конце вместо стрелки. Ротор отображается в виде короткой дуги. Другие элементы - термоконденсаторы обозначаются буквами СК. В его графическом изображении возле знака нелинейной регулировки проставляется температурный символ.

Постоянные конденсаторы

Широко используются графические обозначения конденсаторов с постоянной емкостью. Они изображаются в виде двух параллельных отрезков и выводов из середины каждого из них. Возле значка проставляется буква С, после нее - порядковый номер элемента и с небольшим интервалом - числовое обозначение номинальной емкости.

При использовании в схеме конденсатора с , вместо его порядкового номера наносится звездочка. Значение номинального напряжения указывается лишь для цепей с высоким напряжением. Это касается всех конденсаторов, кроме электролитических. Цифровой символ напряжения проставляется после обозначения емкости.

Соединение многих электролитических конденсаторов требует соблюдения полярности. На схемах для обозначения положительной обкладки используется значок «+» либо узкий прямоугольник. При отсутствии полярности узкими прямоугольниками помечаются обе обкладки.

Диоды и стабилитроны

Диоды относятся к простейшим полупроводниковым приборам, функционирующим на основе электронно-дырочного перехода, известного как p-n-переход. Свойство односторонней проводимости наглядно передается на графических обозначениях. Стандартный диод изображается в виде треугольника, символизирующего анод. Вершина треугольника указывает направление проводимости и упирается в поперечную черту, обозначающую катод. Все изображение пересекается по центру линией электрической цепи.

Для используется буквенное обозначение VD. Оно отображает не только отдельные элементы, но и целые группы, например, . Тип того или иного диода указывается возле его позиционного обозначения.

Базовый символ применяется и для обозначения стабилитронов, представляющих собой полупроводниковые диоды с особыми свойствами. В катоде присутствует короткий штрих, направленный в сторону треугольника, символизирующего анод. Данный штрих располагается неизменно, независимо от положения значка стабилитрона на принципиальной схеме.

Транзисторы

У большинства радиоэлектронных компонентов имеется лишь два вывода. Однако такие элементы как транзисторы оборудованы тремя выводами. Их конструкции отличаются разнообразными типами, формами и размерами. Общие принципы работы у них одинаковые, а небольшие отличия связаны с техническими характеристиками конкретного элемента.

Транзисторы используются преимущественно в качестве электронных коммутаторов для включения и выключения различных устройств. Основное удобство таких приборов заключается в возможности коммутировать большое напряжение с помощью источника малого напряжения.

По своей сути каждый транзистор является полупроводниковым прибором, с помощью которого генерируются, усиливаются и преобразуются электрические колебания. Наибольшее распространение получили биполярные транзисторы с одинаковой электропроводностью эмиттера и коллектора.

На схемах они обозначаются буквенным кодом VT. Графическое изображение представляет собой короткую черточку, от середины которой отходит линия. Данный символ обозначает базу. К ее краям проводятся две наклонные линии под углом 60 0 , отображающие эмиттер и коллектор.

Электропроводность базы зависит от направления стрелки эмиттера. Если она направлена в сторону базы, то электропроводность эмиттера - р, а у базы - n. При направлении стрелки в противоположную сторону, эмиттер и база меняют электропроводность на противоположное значение. Знание электропроводности необходимо для правильного подключения транзистора к источнику питания.

Для того чтобы обозначение на схемах радиодеталей транзистора было более наглядным, оно помещается в кружок, означающий корпус. В некоторых случаях выполняется соединение металлического корпуса с одним из выводов элемента. Такое место на схеме отображается в виде точки, проставляемой там, где вывод пересекается с символом корпуса. Если же на корпусе имеется отдельный вывод, то линия, обозначающая вывод, может подсоединяться к кружку без точки. Возле позиционного обозначения транзистора указывается его тип, что позволяет существенно повысить информативность схемы.

Буквенные обозначение на схемах радиодеталей

Основное обозначение

Наименование элемента

Дополнительное обозначение

Вид устройства

Устройство

Регулятор тока

Блок реле

Устройство

Преобразователи

Громкоговоритель

Датчик тепловой

Фотоэлемент

Микрофон

Звукосниматель

Конденсаторы

Батарея конденсаторов силовая

Блок конденсаторов зарядный

Интегральные схемы, микросборки

ИС аналоговая

ИС цифровая, логический элемент

Элементы разные

Теплоэлектронагреватель

Лампа осветительная

Разрядники, предохранители, устройства защитные

Дискретный элемент защиты по току мгновенного действия

То же, по току инерционного действия

Предохранитель плавкий

Разрядник

Генераторы, источники питания

Батарея аккумуляторов

Синхронный компенсатор

Возбудитель генератора

Устройства индикационные и сигнальные

Прибор звуковой сигнализации

Индикатор

Прибор световой сигнализации

Табло сигнальное

Лампа сигнальная с зеленой линзой

Лампа сигнальная с красной линзой

Лампа сигнальная с белой линзой

Индикаторы ионные и полупроводниковые

Реле, контакторы, пускатели

Реле токовое

Реле указательное

Реле электротепловое

Контактор, магнитный пускатель

Реле времени

Реле напряжения

Реле команды включения

Реле команды отключения

Реле промежуточное

Катушки индуктивности, дроссели

Дроссель люминесцентного освещения

Измеритель времени действия, часы

Вольтметр

Ваттметр

Выключатели и разъединители силовые

Выключатель автоматический

Резисторы

Терморезистор

Потенциометр

Шунт измерительный

Варистор

Устройство коммутации в цепях управления, сигнализации и измерительных цепях

Выключатель или переключатель

Выключатель кнопочный

Выключатель автоматический

Автотрансформаторы

Трансформатор тока

Трансформаторы напряжения

Преобразователи

Модулятор

Демодулятор

Блок питания

Преобразователь частоты

Приборы электровакуумные и полупроводниковые

Диод, стабилитрон

Прибор электровакуумный

Транзистор

Тиристор

Соединители контактные

Токосъемник

Соединитель высокочастотный

Устройства механические с электромагнитным приводом

Электромагнит

Замок электромагнитный

Компоненты электронных схем, применяемые при изготовлении ламповых усилителей звуковых частот.

Электронные компоненты – это производственно-исполненные по специальным технологическим процессам, законченные технические изделия с ограниченным регламентированным функционалом, входящие в состав электронных и радиотехнических устройств и, определяющие заданные свойства и характеристики, частей электронных схем этих устройств.
В начале прошлого века, с бурным развитием радиоприемной и радиопередающей техники, за электронными компонентами прочно закрепилось народное название - радиодетали . На появление названия повлияло то, что в начале 20-го века первым технически сложным электронным устройством, стало радио. Изначально термин радиодетали означал электронные компоненты, применяемые для производства радиоприёмников, затем это название распространилось и на остальные электронные компоненты, не имеющие прямой связи с радиоустройствами. В документах этого сайта, Вы найдете описание, только тех электронных компонентов, которые как правило, применяются в усилителях низкой частоты.
Все электронные компоненты подразделяются на активные и пассивные .
Пассивные электронные компоненты , в пределах своих технических характеристик, изменяют свои параметры только по линейным математическим соотношениям и зависимостям (имеется ввиду вольт – амперная характеристика, показывающая зависимость постоянного тока от постоянного приложенного напряжения). К пассивным электронным компонентам относятся: - резисторы; - конденсаторы; - предохранители; - соединительные проводники; -дроссели; - трансформаторы; - динамические излучающие головки; - пъезоэлементы; - переключатели; - сигнальные лампочки накаливания.

Резистор один из основных компонентов электронных счем. В ламповых усилителях резисторы выполняют роль анодной или катодной нагрузки, в зависимости от типа каскада усиления. На резисторах строятся цепочки делителей напряжения, для обеспечения правильных режимов работы лампы. Резисторы, используются для понижения напряжения и тока в цепях обратной связи ламповых усилителей и в частотно - зависимых цепях регулировки тембра. Основным условием снижения до минимума собственных тепловых шумов резисторов, является использование резисторов, превышающих допустимую расчетную мощность в два или три раза.

Конденсаторы незаменимы при создании фильтров питания, стабилизаторов напряжения и других питаюших устройств высококачественной звукотехники. Основное предназначение конденсатора в ламповом усилителе, выполнять функцию передачи переменного звукового напряжения от анода лампы предыдущего каскада к управляющей сетке последующего и при этом, изолировать управляющую сетку от воздействия высокого анодного напряжения. Конечно было бы на много лучше если бы этих переходных конденсаторов не было бы вообще, а связь анода с сеткой следующего каскада была бы непосредственной. Такие схемы существуют но при создании многокаскадных схем с непосредственной связью, системы питания сильно удорожают общее устройство.

Название дроссель, происходит от немецкого термина Drossel. Дроссель это электротехническое изделие, обладающее собственной индуктивностью и малым собственным сопротивлением. Эти его свойства, позволяют использовать дроссель в цепях смешанного с постоянным, переменного и импульсного тока, как высокое реактивное сопротивление переменному току и одновременно очень низкое сопротивление постоянному току. При прохождении по цепи дросселя переменного тока в обмотке возникает ЭДС самоиндукции направленная противофазно переменному току её вызывающему. За счет этих свойств дроссель уверенно занял своё место в качестве элемента фильтра в системах питания ламповых усилителей.

Трансформатор - это технологически законченное электромагнитное изделие, предназначенное для преобразования параметров переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте. Действие трансформатора основано на использовании явления электромагнитной индукции. В схемах ламповых усилителей звуковой частоты, трансформаторы чаще всего, используются в блоках питания (силовые и накальные), а также в выходных каскадах мощности (выходные). Реже трансформаторы используются как входные и межкаскадные. К трансформаторам, которые непосредственно используются в звуковых цепях лампового усилителя, предъявляются повышенные требования к качеству исполнения. В усилителях звуковых частот, выполненных на лампах, применяются трансформаторы из наборных пакетов пластин, трансформаторы с сердечниками из витого ленточного железа и торроидальные трансформаторы.

Активные электронные компоненты , в пределах своих технических характеристик, изменяют свои параметры по нелинейным математическим соотношениям и зависимостям. К активным электронным компонентам относятся: - вакуумные электронные лампы; - газонаполненные ионные лампы; - полупроводниковые выпрямительные диоды; - полупроводниковые выпрямительные мосты; - полупроводниковые стабилитроны и стабисторы; - полупроводниковые тиристоры; - полупроводниковые транзисторы; - полупроводниковые фотоэлементы.

Необычайное разнообразие электронных ламп, как электровакуумных приборов, делает невозможным проведение классификации и анализа всей этой продукции, с единых позиций. Нет, пожалуй, ни одного показателя, который оказался бы присущ всем без исключения лампам. Вроде бы, само определение электровакуумного прибора подразумевает обязательный вакуум внутри колбы. Однако существует многочисленная группа газонаполненных ламп, которые по официальной классификации также отнесены к электровакуумным приборам.
Поэтому в мировой практике давно сложилась традиция относить радиолампы к определенной группе по какому-либо одному или нескольким признакам. Так, к примеру, можно выделить группу ламп, предназначенных для работы в СВЧ-диапазоне или группу ламп, предназначенных для воспроизведения цветных изображений (кинескопы). А можно объединить в одну группу самые различные лампы с одинаковой формой (или материалом) баллона. В то же время все эти очень разные лампы можно отнести к одной группе ламп с косвенным подогревом катода.

Простейшие элементы электронных устройств, это:

1) Конденсатор – устройство, способное накапливать энергию в электрическом поле.

Ток протекающий через конденсатор, пропорционален изменению напряжения в единицу времени.

2) Дроссель или катушка индуктивности – дроссель обладает так же способностью накапливать энергию, но не в электрическом, а в магнитном поле. Ведёт себя подобно конденсатору, за исключением того, что рассматривать нужно не напряжение, а ток.

Если подключить параллельно дроссель и конденсатор то получится колебательный контур.

3) Диод (p-n переход ) – двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока

P имеет электронную проводимость (лидирована донорной примесью)

N имеет дырочную проводимость (лидирована акценнторной примесью)

Различают несколько разновидностей диодов:

    стабилитрон

  • фото и светодиоды

4) Резистор - пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома.

Закон Ома гласит, что сила тока равна отношению напряжения к сопротивлению (I=U/R)

а) Напряжение – это разность потенциалов.

б) Сопротивление – величина обратно пропорциональная проводимости.

Напряжение измеряется в Вольтах, сопротивление – в Омах.

  1. Пассивные схемы. Резистивный делитель.

Делитель напряжения - устройство для деления постоянного или переменного напряжения.

Строится на основе активных, реактивных или нелинейных сопротивлений.

1) Делитель . В делителе сопротивления включаются последовательно.

Выходным напряжением является напряжение на отдельном участке цепи делителя.

2) Плечо . Участки, расположенные между напряжением питания и точкой снятия выходного напряжения называют плечами делителя.

а) Плечо нижнее . Плечо между выходом и нулевым потенциалом питания обычно называют нижним.

б) Плечо верхнее . Другое при этом называют верхним. В любом делителе два плеча.

3) Резисторный делитель . Делитель напряжения, построенный исключительно на активных сопротивлениях, называется резистивным делителем напряжения. Коэффициент деления таких делителей не зависит от частоты приложенного напряжения.

Простейший резистивный делитель напряжения представляет собой два последовательно включённых резистора R1 и R2, подключённых к источнику напряжения U.

  1. Пассивные фильтры. Фнч.

1) Пассивный фильтр - электронный фильтр, состоящий только из пассивных компонент, таких как, к примеру, конденсаторы и резисторы.

Пассивные фильтры не требуют никакого источника энергии для своего функционирования.

В отличие от активных фильтров в пассивных фильтрах не происходит усиления сигнала по мощности. Практически всегда пассивные фильтры являются линейными.

2) Использование . Пассивные фильтры используются повсеместно в радио- и электронной аппаратуре, например в акустических системах, источниках бесперебойного питания и т. д.

3) Фильтр нижних частот (ФНЧ) - электронный или любой другой фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза), и уменьшающий (или подавляющий) частоты сигнала выше этой частоты.

Степень подавления каждой частоты зависит от вида фильтра.

3) Отличие от ФВЧ . В отличие от него, фильтр высоких частот пропускает частоты сигнала выше частоты среза, подавляя низкие частоты.

4) Термины «высокие частоты» и «низкие частоты» в применении к фильтрам относительны и зависят от выбранной структуры и параметров фильтра.

5) Идеальный фильтр нижних частот полностью подавляет все частоты входного сигнала выше частоты среза и пропускает без изменений все частоты ниже частоты среза. Переходной зоны между частотами полосы подавления и полосы пропускания не существует. Идеальный фильтр нижних частот может быть реализован лишь теоретически