Создаем беспроводной термометр на Arduino

Узнайте, как использовать RF модуль 433 МГц совместно с ATMega328P-PU. В данной статье мы соберем схему из датчика DHT11 и радиочастотного передатчика. А также соберем приемное устройство с радиоприемником 433 МГц и LCD дисплеем.

Что нам потребуется

  • компьютер с установленной Arduino IDE (я использую версию 1.6.5);
  • библиотека VirtualWire (ссылка ниже);
  • ATMega328P;
  • программатор AVR MKII ISP;
  • датчик температуры и относительной влажности воздуха DHT11 ;
  • компоненты из перечня элементов, приведенного ниже.

Введение

В данной статье я покажу вам, как собрать устройство, которое измеряет температуру и относительную влажность воздуха и посылает измеренные значения с помощью стандартного радиочастотного модуля 433 МГц. Датчик температуры и влажности, используемый в устройстве, - это DHT11.

Существует множество способов передачи небольшого объема данных с помощью Arduino или контроллеров ATMega. Один из них использует уже готовую библиотеку, подобную RCSwitch, Radiohead или VirtualWire. Кроме того, можно отправить необработанные данные с помощью встроенного в микроконтроллер модуля UART. Но использовать встроенный модуль UART не рекомендуется, так как приемник будет собирать и все помехи, и микроконтроллер будет работать не так, как предполагалось. В данной статье для передачи и приема данных я использую библиотеку VirtualWire. Эта библиотека работает с Arduino IDE 1.6.2 и 1.6.5.

Модуль передатчика 433 МГц, когда не передает данные, всё равно излучает радиочастотные колебания и передает шум. Он также может создавать помехи другим радиочастотным устройствам. Чтобы не допустить этого, я включаю его, когда необходимо передать данные, и выключаю его, когда передача закончена.

Аппаратная часть

Нам необходимы две структурные схемы. Одна для передающего устройства, вторая для приемного.

Передатчик

Нам необходимы:

  • способ прошивки микроконтроллера → ISP;
  • датчик для измерения температуры и влажности → DHT11;
  • микроконтроллер для обработки данных → ATMega32p;
  • способ беспроводной передачи данных → радиочастотный модуль 433 МГц.

Приемник

Нам необходимы:

  • способ приема радиосигнала → радиочастотный модуль 433 МГц;
  • способ обработки принятых данных → Arduino Mega;
  • способ отображения температуры и влажности → 16x2 LCD.

Принципиальные схемы

Передатчик


Передающая часть беспроводного термометра на ATMega328p
()

В данном примере я не буду выводить неиспользуемые выводы микроконтроллера на внешние контакты термометра, после чего их можно было бы использовать для дальнейшего усовершенствования устройства. Здесь мы рассматриваем лишь идею для устройства и соберем его только на макетной плате.

Приемник



(для увеличения масштаба можно кликнуть по картинке правой кнопкой мыши и выбрать «Открыть ссылку/изображение в новой вкладке/новом окне» )

Пожалуйста, обратите внимание, что приемник построен на базе платы Arduino Mega, которая не изображена на схеме. Для подключения платы Arduino Mega соедините с ней радиочастотный модуль и LCD дисплей согласно метка на схеме.

Перечень элементов

Передатчик


Перечень элементов передающей части беспроводного термометра на ATMega328p
(для увеличения масштаба можно кликнуть по картинке правой кнопкой мыши и выбрать «Открыть ссылку/изображение в новой вкладке/новом окне» )

Приемник



(для увеличения масштаба можно кликнуть по картинке правой кнопкой мыши и выбрать «Открыть ссылку/изображение в новой вкладке/новом окне» )

Программа

Программа передатчика

Сперва рассмотрим программу передающей части:

#include // Определение #define dhtPin 4 #define dhtType DHT11 #define txPowerPin 8 // Использование библиотеки DHT DHT dht(dhtPin, dhtType); // Переменные char msg0; char msg1; int tem = 0; int hum = 0; // Функция первоначальной настройки - выполняется только один раз при включении void setup() { pinMode(txPowerPin, OUTPUT); pinMode(txPowerPin, LOW); vw_setup(4800); // Скорость соединения VirtualWire vw_set_tx_pin(9); // Вывод передачи VirtualWire } // Функция цикла - выполняется всегда void loop() { digitalWrite(txPowerPin, HIGH); hum = dht.readHumidity(); // Переменная хранит влажность tem = dht.readTemperature(); // Переменная хранит температуру itoa(hum, msg1, 10); // Преобразование влажности в массив char itoa(tem, msg0, 10); // Преобразование температуры в массив char strcat(msg0, msg1); // Сложение/объединение двух массивов vw_send((uint8_t *)msg0, strlen(msg0)); // Передача сообщения vw_wait_tx(); // Ждем завершения передачи digitalWrite(txPowerPin, LOW); delay(5000); // Ждем 5 секунд и повторяем всё снова }

Для передачи влажности и температуры в одном сообщении я соединяю их вместе. Сначала данные считываются в переменную как целые числа, потом целые числа преобразовываются в массив символов, а затем они соединяются друг с другом. На приемной стороне данные будут разделены на отдельные символы. Делая это, я ограничиваю себя двумя цифрами градусов. Если датчик находится в среде с температурой менее 10°C, я буду получать на дисплее символы мусора. Например, если температура составляет 20°C, а влажность - 45%, то будет передаваться сообщение 2045, и всё хорошо. Если температура равна 9°C, а влажность - 78%, то передастся сообщение 978x, где «x» - случайный символ. Поэтому, если вы будете собирать данный беспроводной термометр, я советую вам изменить программу для передачи правильных данных, когда температура будет меньше 10°C.

Программа приемника

// Подключаем необходимые библиотеки #include #include // Определение подключение LCD #define RS 9 #define E 10 #define D4 5 #define D5 6 #define D6 7 #define D7 8 LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Отрисовка символа градусов byte degreesymbol = { B01100, B10010, B10010, B01100, B00000, B00000, B00000, B00000 }; // Переменные int tem = 0; int i; // Функция первоначальной настройки - выполняется только один раз при включении void setup() { lcd.begin(16,2); // Инициализация LCD lcd.createChar(1, degreesymbol); // Создание символа градусов в месте 1 Serial.begin(9600); // Для отладки vw_setup(4800); // Скорость соединения VirtualWire vw_rx_start(); // Готовность для приема vw_set_rx_pin(2); // Вывод приема VirtualWiore lcd.clear(); // Очистить LCD } // Функция цикла - выполняется всегда void loop() { uint8_t buf; // Переменная для хранения принятых данных uint8_t buflen = VW_MAX_MESSAGE_LEN; // Переменная для хранения длины принятых данных lcd.setCursor(0,0); lcd.print("Temp: "); if (vw_get_message(buf, &buflen)) // Если данные приняты { for (i=0;i<2;i++) // Получить два первых байта { Serial.write(buf[i]); // Для отладки lcd.write(buf[i]); // Вывести первые байты на LCD } Serial.println(); // Для отладки lcd.write(1); // Вывести символ градусов на LCD lcd.print(" C"); lcd.setCursor(0,1); lcd.print("Hum: "); for (i=2;i<4;i++) // Получаем последние два байта { Serial.write(buf[i]); // Отладка lcd.write(buf[i]); // Вывести последние байты на LCD } lcd.print("% RH"); } }

Интересный способ использования библиотеки LiquidCrystal - это создание пользовательских символов. С помощью createChar я создал символ градусов. Таким же способом вы можете создать и свои собственные символы. Чтобы создать пользовательский символ или значок, вам необходимо объявить его, как массив из восьми байт, и «нарисовать», какие пиксели будут включены (1 - включен, 0 - выключен).