Где находится флеш память. Что такое флеш-память? Принцип работы и устройство флеш-памяти

Современные технологии развиваются достаточно быстро, и то, что ещё вчера казалось верхом совершенства, сегодня нас совсем не устраивает. Это особенно относится к современным видам компьютерной памяти. Памяти постоянно не хватает или скорость носителя очень низкая, по современным меркам.

Флеш-память появилась относительно недавно, но имея много преимуществ достаточно серьёзно теснит другие виды памяти.

Флеш- память - это вид твёрдотельной энергонезависимой, перезаписываемой памяти. В отличии от жёсткого диска флешка имеет большую скорость чтения, которая может доходить до 100 Мб/с, очень маленький размер. Её можно легко транспортировать, так как она подключается через USB- порт.

Ею можно пользоваться как ОЗУ, но в отличии от ОЗУ, флеш-память хранит данные при отключенном питании, автономно.

Сегодня на рынке представлены флеш- носители объёмом от 256 мегабайт до 16 гигабайт. Но имеются носители и с большим объёмом.

К дополнительным функциям флеш- памяти можно отнести защиту от копирования, сканер отпечатков пальцев, модуль шифрования и многое другое. Так же если материнская плата поддерживает загрузку через USB- порт, то её можно использовать как загрузочное устройство.

К новым флеш- технологиям можно отнести UЗ. Этот носитель распознаётся компьютером как два диска, где на одном хранятся данные, а со второго происходит загрузка компьютера. Преимущества этой технологии очевидны, вы можете работать на любом компьютере.

Достаточно маленький размер, позволяет использовать этот вид памяти очень широко. Это и мобильные телефоны, фотоаппараты, видеокамеры, диктофоны и другое оборудование.

В описании технических характеристик любого мобильного устройства указывается тип флеш-памяти и не случайно, так как не все типы совместимы. Исходя их этого, надо выбирать достаточно распространенные на рынке флешки, чтобы не иметь проблем с каким-нибудь устройством.
Для некоторых типов флеш-карт существуют адаптеры, которые расширяют её возможности.

Существующие типы флеш-памяти

Современные флеш-карты можно разделить на шесть основных типов.

Первый и самый распространенный тип - это CompactFlash (CF) , имеется двух видов CF type I и CF type II. Имеет хорошую скорость, ёмкость и цену.
К недостаткам относят размер 42*36*4 мм. Является достаточно универсальным и используется во многих устройствах.

IBM Microdrive -дешёвая, но менее надёжная и потребляет больше обычного энергии, что и является причиной её ограниченности.

SmartMedia - тонкая и дешёвая, но не высокая защита от стирания.

Multimedia Card (MMC) - маленький размер (24x32x1,4мм), низкое энергопотребление, используется в миниатюрных устройствах. Недостаток - низкая скорость.

SecureDigital (SD) при сопастовимых размерах с Multimedia Card, имеет больший объём и скорость. Но дороже.

MemoryStick - имеет хорошую защиту информации, скорость, но не очень большую ёмкость.

Сегодня самыми распространёнными считаются CompactFlash и SD/MMC, но
кроме перечисленных карт, существуют и другие виды флеш-карт

Выбирать флеш-карту стоит исходя из своих потребностей, учитывая, что чем больше объём и скорость, тем дороже флеш- карта.

Что такое Flash Memory?

Flash Memory/USB-накопитель или флэш-память - это миниатюрное запоминающее устройство, применимое в качестве дополнительного носителя информации и ее хранения. Устройство подключается к компьютеру или другому считывающему устройству через интерфейс USB.

USB-накопитель предназначен для многократного прочитывания записанной на нем информации в течение установленного срока эксплуатации, который обычно составляет от 10 до 100 лет. Производить же запись на флэш-память можно ограниченное количество раз (около миллиона циклов).

Флеш-память считается более надежным и компактным по сравнению с жесткими дисками (HDD), поскольку не имеет подвижных механических частей. Данное устройство довольно широко используется при производстве цифровых портативных устройств: фото и видеокамер, диктофонов и MP3-плееров, КПК и мобильных телефонов. Наряду с этим, Flash Memory используется для хранения встроенного ПО в различном оборудовании, таком как модемы, мини-АТС, сканеры, принтеры или же маршрутизаторы. Пожалуй, единственным недостатком современных USB-накопителей является их относительно малый объем.

История Flash Memory

Первая флеш-память появилась в 1984 году, ее изобрел инженер компании Toshiba Фудзио Масуокой (Fujio Masuoka), коллега которого Сёдзи Ариидзуми (Shoji Ariizumi) сравнил принцип действия данного устройства с фотовспышкой и впервые назвал его «flash». Публичная презентация Flash Memory состоялась в 1984 году на Международном семинаре по электронным устройствам, проходившем в Сан-Франциско, штат Калифорния, где данным изобретением заинтересовалась компанию Intel. Спустя четыре года ее специалисты выпустили первый флеш-процессор коммерческого типа. Крупнейшими производителями флэш-накопителей в конце 2010 года стали компания Samsung, занимающей 32% данного рынка и Toshiba - 17%.

Принцип работы USB-накопителя

Вся информация, записанная на Flash-накопитель и сохраненная в его массиве, который состоит из транзисторов с плавающим затвором, именуемыми ячейками (cell). В обычных устройствах с одноуровневыми ячейками (single-level cell), любая из них "запоминает" только один бит данных. Однако некоторые новые чипы с многоуровневыми ячейками (multi-level cell или triple-level cell) способны запомнить и больший объем информации. При этом на плавающем затворе транзистора должен использоваться различный электрический заряд.

Основные характеристики USB-накопителя

Объем представленных в настоящее время флэш-накопителей измеряется от нескольких килобайт до сотен гигабайт.

В 2005 году специалисты компаний Toshiba и SanDisk провели презентацию NAND-процессора, общий объем которого составил 1 Гб. При создании данного устройства они применили технологию многоуровневых ячеек, когда транзистор способен хранить несколько бит данных, используя различный электрический заряд на плавающем затворе.

В сентябре следующего года компания Samsung представила общественности уже 4-гигабайтный чип, разработанный на основе 40-нм технологического процесса, а в конце 2009 года, технологи Toshiba заявили о создании 64 Гб флэш-накопителя, который был запущен в массвое производство уже в начале следующего года.

Летом 2010-го состоялась презентация первого в истории человечества USB-накопителя объемом 128 Гб, состоящий из шестнадцати модулей по 8 Гб.

В апреле 2011 года компании Intel и Micron объявили о создании MLC NAND флэш-чипа на 8 Гбайт, площадью 118 мм, почти вполовину меньше аналогичных устройств, серийное производство которого стартовало в конце 2011 года.

Типы карт памяти и Flash-накопителей

Применяется он в основном в профессиональном видео- и фото-оборудовании, поскольку имеет довольно большие размеры 43х36х3,3 мм, в результате чего довольно проблематично установить слот для Compact Flash в мобильные телефоны или MP3-плееры. При этом карта считается не очень надежной, а также не обладает высокой скоростью обработки данных. Максимально допустимый объём Compact Flash в настоящее время достигает 128 Гбайт, а скорость копирования данных выросла до 120 Мбайт/с.

RS-MMC/Reduced Size Multimedia Card - карта памяти, которая в два раза по длине меньше стандартной карты MMC - 24х18х1,4 мм и весом около 6 гр. При этом сохранены все остальные характеристики и параметры обычной MMC-карты. Для использования карт RS-MMC необходимо использовать адаптер.

MMCmicro - миниатюрная карта памяти с размерами всего 14х12х1,1 мм и предназначенная для мобильных устройств. Для ее применения необходимо использовать стандартный слот MMC и специальный переходник.

Несмотря на очень схожие с ММС-картой параметры и размеры 32х24х2,1 мм, данную карту нельзя использовать со стандартным слотом ММС.

SDHC/SD High Capacity - это SD-карта памяти высокой ёмкости, известные современным пользователям как SD 1.0, SD 1.1 и SD 2.0 (SDHC). Данный устройства различаются максимально допустимым объемом данных, который можно на них разместить. Так предусмотрены ограничения по емкости в виде 4 Гб для SD и 32 Гб для SDHC. При этом SDHC-карта обратно совместима с SD. Оба варианта могут быть представлены в трех форматах физических размеров: стандартный, mini и micro.

microSD/Micro Secure Digital Card - это самое компактное по данным на 2011 год съёмное устройствами флеш-памяти, его размеры составляют 11х15х1 мм, что позволяет использовать его мобильных телефонах, коммуникаторах и т. д. Переключатель защиты от записи расположен на адаптере microSD-SD, а максимально возможный объём карты составляет 32 Гб.

Memory Stick Micro/M2 - карта памяти, формат которой конкурирует по размеру с microSD, но при этом преимущество остается за устройствами Sony.

  • Физика ,
  • Электроника для начинающих
  • Предисловие

    Новый Год – приятный, светлый праздник, в который мы все подводим итоги год ушедшего, смотрим с надеждой в будущее и дарим подарки. В этой связи мне хотелось бы поблагодарить всех хабра-жителей за поддержку, помощь и интерес, проявленный к моим статьям ( , , , ). Если бы Вы когда-то не поддержали первую, не было и последующих (уже 5 статей)! Спасибо! И, конечно же, я хочу сделать подарок в виде научно-популярно-познавательной статьи о том, как можно весело, интересно и с пользой (как личной, так и общественной) применять довольно суровое на первый взгляд аналитическое оборудование. Сегодня под Новый Год на праздничном операционном столе лежат: USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung.

    Теоретическая часть

    Постараюсь быть предельно краток, чтобы все мы успели приготовить салат оливье с запасом к праздничному столу, поэтому часть материала будет в виде ссылок: захотите – почитаете на досуге…
    Какая память бывает?
    На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash. Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.

    Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах .

    Что такое flash-память и какой она бывает (NOR и NAND)?
    Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают. В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память ( тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.


    Схематическое представление транзистора с плавающим затвором.

    Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано . Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.

    NB: «практически» - ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.

    Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора. При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:


    Устройство ячейки RAM.

    Опять-таки на ixbt есть неплохая , посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.

    Единственный вопрос, который меня мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да , но всё-таки…

    Часть практическая

    Flash
    Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:


    Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6. LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти.

    Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы ). К моему глубокому сожалению, за время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.


    Корпус кварцевого генератора

    Случайно, между делом, нашёл-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:


    Армирующее волокно внутри текстолита (красными стрелками указаны волокна, перпендикулярные срезу), из которого и состоит основная масса текстолита

    А вот и первая важная деталь флешки – контроллер:


    Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий

    Признаюсь честно, не совсем понял задумку инженеров, которые в самой заливке чипа поместили ещё какие-то дополнительные проводники. Может быть, это с точки зрения технологического процесса проще и дешевле сделать.

    После обработки этой картинки я кричал: «Яяяяязь!» и бегал по комнате. Итак, Вашему вниманию представляет техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:


    «Язь!» микроэлектроники – техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate)

    Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый» < 2 диаметров человеческого волоса, так что всё в мире относительно:


    СЭМ-изображения контактов, питающих чип памяти

    Если говорить о самой памяти, то тут нас тоже ждёт успех. Удалось отснять отдельные блоки, границы которых выделены стрелочками. Глядя на изображение с максимальным увеличением, постарайтесь напрячь взгляд, этот контраст реально трудно различим, но он есть на изображении (для наглядности я отметил отдельную ячейку линиями):


    Ячейки памяти 1. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

    Мне самому сначала это показалось как артефакт изображения, но обработав все фото дома, я понял, что это либо вытянутые по вертикальной оси управляющие затворы при SLC-ячейке, либо это несколько ячеек, собранных в MLC. Хоть я и упомянул MLC выше, но всё-таки это вопрос. Для справки, «толщина» ячейки (т.е. расстояние между двумя светлыми точками на нижнем изображении) около 60 нм.

    Чтобы не лукавить – вот аналогичные фото с другой половинки флешки. Полностью аналогичная картина:


    Ячейки памяти 2. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

    Конечно, сам чип – это не просто набор таких ячеек памяти, внутри него есть ещё какие-то структуры, принадлежность которых мне определить не удалось:


    Другие структуры внутри чипов NAND памяти

    DRAM
    Всю плату SO-DIMM от Samsung я, конечно же, не стал распиливать, лишь с помощью строительного фена «отсоединил» один из модулей памяти. Стоит отметить, что тут пригодился один из советов, предложенных ещё после первой публикации – распилить под углом. Поэтому, для детального погружения в увиденное необходимо учитывать этот факт, тем более что распил под 45 градусов позволил ещё получить как бы «томографические» срезы конденсатора.

    Однако по традиции начнём с контактов. Приятно было увидеть, как выглядит «скол» BGA и что собой представляет сама пайка:


    «Скол» BGA-пайки

    А вот и второй раз пора кричать: «Язь!», так как удалось увидеть отдельные твердотельные конденсаторы – концентрические круги на изображении, отмеченные стрелочками. Именно они хранят наши данные во время работы компьютера в виде заряда на своих обкладках. Судя по фотографиям размеры такого конденсатора составляют около 300 нм в ширину и около 100 нм в толщину.

    Из-за того, что чип разрезан под углом, одни конденсаторы рассечены аккуратно по середине, у других же срезаны только «бока»:


    DRAM память во всей красе

    Если кто-то сомневается в том, что эти структуры и есть конденсаторы, то можно посмотреть более «профессиональное» фото (правда без масштабной метки).

    Единственный момент, который меня смутил, что конденсаторы расположены в 2 ряда (левое нижнее фото), т.е. получается, что на 1 ячейку приходится 2 бита информации. Как уже было сказано выше, информация по мультибитовой записи имеется, но насколько эта технология применима и используется в современной промышленности – остаётся для меня под вопросом.

    Конечно, кроме самих ячеек памяти внутри модуля есть ещё и какие-то вспомогательные структуры, о предназначении которых я могу только догадываться:


    Другие структуры внутри чипа DRAM-памяти

    Послесловие

    Помимо тех ссылок, что раскиданы по тексту, на мой взгляд, довольно интересен данный обзор (пусть и от 1997 года), сам сайт (и фотогалерея, и chip-art, и патенты, и много-много всего) и данная контора , которая фактически занимается реверс-инжинирингом.

    К сожалению, большого количества видео на тему производства Flash и RAM найти не удалось, поэтому довольствоваться придётся лишь сборкой USB-Flash-накопителей:

    P.S.: Ещё раз всех с наступающим Новым Годом чёрного водяного дракона!!!
    Странно получается: статью про Flash хотел написать одной из первых, но судьба распорядилась иначе. Скрестив пальцы, будем надеяться, что последующие, как минимум 2, статьи (про биообъекты и дисплеи) увидят свет в начале 2012 года. А пока затравка - углеродный скотч:


    Углеродный скотч, на котором были закреплены исследуемые образцы. Думаю, что и обычный скотч выглядит похожим образом

    Флэш-память представляет собой тип долговечной памяти для компьютеров, у которой содержимое можно перепрограммировать или удалить электрическим методом. В сравнении с Electrically Erasable Programmable Read Only Memory действия над ней можно выполнять в блоках, которые находятся в разных местах. Флэш-память стоит намного меньше, чем EEPROM, поэтому она и стала доминирующей технологией. В особенности в ситуациях, когда необходимо устойчивое и длительное сохранение данных. Ее применение допускается в самых разнообразных случаях: в цифровых аудиоплеерах, фото- и видеокамерах, мобильных телефонах и смартфонах, где существуют специальные андроид-приложения на карту памяти. Кроме того, используется она и в USB-флешках, традиционно применяемых для сохранения информации и ее передачи между компьютерами. Она получила определенную известность в мире геймеров, где ее часто задействуют в промах для хранения данных по прогрессу игры.

    Общее описание

    Флэш-память представляет собой такой тип, который способен сохранять информацию на своей плате длительное время, не используя питания. В дополнение можно отметить высочайшую скорость доступа к данным, а также лучшее сопротивление к кинетическому шоку в сравнении с винчестерами. Именно благодаря таким характеристикам она стала настольно популярной для приборов, питающихся от батареек и аккумуляторов. Еще одно неоспоримое преимущество состоит в том, что когда флэш-память сжата в сплошную карту, ее практически невозможно разрушить какими-то стандартными физическими способами, поэтому она выдерживает кипящую воду и высокое давление.

    Низкоуровневый доступ к данным

    Способ доступа к данным, находящимся во флэш-памяти, сильно отличается от того, что применяется для обычных видов. Низкоуровневый доступ осуществляется посредством драйвера. Обычная RAM сразу же отвечает на призывы чтения информации и ее записи, возвращая результаты таких операций, а устройство флеш-памяти таково, что потребуется время на размышления.

    Устройство и принцип работы

    На данный момент распространена флэш-память, которая создана на однотранзисторных элементах, имеющих «плавающий» затвор. Благодаря этому удается обеспечить большую плотность хранения данных в сравнении с динамической ОЗУ, для которой требуется пара транзисторов и конденсаторный элемент. На данный момент рынок изобилует разнообразными технологиями построения базовых элементов для такого типа носителей, которые разработаны лидирующими производителями. Отличает их количество слоев, методы записи и стирания информации, а также организация структуры, которая обычно указывается в названии.

    На текущий момент существует пара типов микросхем, которые распространены больше всего: NOR и NAND. В обоих подключение запоминающих транзисторов производится к разрядным шинам - параллельно и последовательно соответственно. У первого типа размеры ячеек довольно велики, и имеется возможность для быстрого произвольного доступа, что позволяет выполнять программы прямо из памяти. Второй характеризуется меньшими размерами ячеек, а также быстрым последовательным доступом, что намного удобнее при необходимости построения устройств блочного типа, где будет храниться информация большого объема.

    В большинстве портативных устройств твердотельный накопитель использует тип памяти NOR. Однако сейчас все популярнее становятся приспособления с интерфейсом USB. В них применяется память типа NAND. Постепенно она вытесняет первую.

    Главная проблема — недолговечность

    Первые образцы флешек серийного производства не радовали пользователей большими скоростями. Однако теперь скорость записи и считывания информации находится на таком уровне, что можно просматривать полноформатный фильм либо запускать на компьютере операционную систему. Ряд производителей уже продемонстрировал машины, где винчестер заменен флеш-памятью. Но у этой технологии имеется весьма существенный недостаток, который становится препятствием для замены данным носителем существующих магнитных дисков. Из-за особенностей устройства флеш-памяти она позволяет производить стирание и запись информации ограниченное число циклов, которое является достижимым даже для малых и портативных устройств, не говоря о том, как часто это делается на компьютерах. Если использовать этот тип носителя как твердотельный накопитель на ПК, то очень быстро настанет критическая ситуация.

    Связано это с тем, что такой накопитель построен на свойстве полевых транзисторов сохранять в «плавающем» затворе отсутствие или наличие которого в транзисторе рассматривается в качестве логической единицы или ноля в двоичной Запись и стирание данных в NAND-памяти производятся посредством туннелированных электронов методом Фаулера-Нордхейма при участии диэлектрика. Для этого не требуется что позволяет делать ячейки минимальных размеров. Но именно данный процесс приводит к ячеек, так как электрический ток в таком случае заставляет электроны проникать в затвор, преодолевая диэлектрический барьер. Однако гарантированный срок хранения подобной памяти составляет десять лет. Износ микросхемы происходит не из-за чтения информации, а из-за операций по ее стиранию и записи, поскольку чтение не требует изменения структуры ячеек, а только пропускает электрический ток.

    Естественно, производители памяти ведут активные работы в направлении увеличения срока службы твердотельных накопителей данного типа: они устремлены к обеспечению равномерности процессов записи/стирания по ячейкам массива, чтобы одни не изнашивались больше других. Для равномерного распределения нагрузки преимущественно используются программные пути. К примеру, для устранения подобного явления применяется технология «выравнивания износа». При этом данные, часто подвергаемые изменениям, перемещаются в адресное пространство флеш-памяти, потому запись осуществляется по разным физическим адресам. Каждый контроллер оснащается собственным алгоритмом выравнивания, поэтому весьма затруднительно сравнивать эффективность тех или иных моделей, так как не разглашаются подробности реализации. Поскольку с каждым годом объемы флешек становятся все больше, необходимо применять все более эффективные алгоритмы работы, позволяющие гарантировать стабильность функционирования устройств.

    Устранение проблем

    Одним из весьма эффективных путей борьбы с указанным явлением стало резервирование определенного объема памяти, за счет которого обеспечивается равномерность нагрузки и коррекция ошибок посредством особых алгоритмов логической переадресации для подмены физических блоков, возникающих при интенсивной работе с флешкой. А для предотвращения утраты информации ячейки, вышедшие из строя, блокируются или заменяются на резервные. Такое программное распределение блоков дает возможность обеспечения равномерности нагрузки, увеличив количество циклов в 3-5 раз, однако и этого мало.

    И другие виды подобных накопителей характеризуются тем, что в их служебную область заносится таблица с файловой системой. Она предотвращает сбои чтения информации на логическом уровне, например, при некорректном отключении либо при внезапном прекращении подачи электрической энергии. А так как при использовании сменных устройств системой не предусмотрено кэширование, то частая перезапись оказывает самое губительное воздействие на таблицу размещения файлов и оглавление каталогов. И даже специальные программы для карт памяти не способны помочь в данной ситуации. К примеру, при однократном обращении пользователь переписал тысячу файлов. И, казалось бы, только по одному разу применил для записи блоки, где они размещены. Но служебные области переписывались при каждом из обновлений любого файла, то есть таблицы размещения прошли эту процедуру тысячу раз. По указанной причине в первую очередь выйдут из строя блоки, занимаемые именно этими данными. Технология «выравнивания износа» работает и с такими блоками, но эффективность ее весьма ограничена. И тут не важно, какой вы используете компьютер, флешка выйдет из строя ровно тогда, когда это предусмотрено создателем.

    Стоит отметить, что увеличение емкости микросхем подобных устройств привело лишь к тому, что общее количество циклов записи сократилось, так как ячейки становятся все меньше, поэтому требуется все меньше и напряжения для рассеивания оксидных перегородок, которые изолируют «плавающий затвор». И тут ситуация складывается так, что с увеличением емкости используемых приспособлений проблема их надежности стала усугубляться все сильнее, а class карты памяти теперь зависит от многих факторов. Надежность работы подобного решения определяется его техническими особенностями, а также ситуацией на рынке, сложившейся на данный момент. Из-за жесткой конкуренции производители вынуждены снижать себестоимость продукции любым путем. В том числе и благодаря упрощению конструкции, использованию комплектующих из более дешевого набора, ослаблению контроля за изготовлением и иными способами. К примеру, карта памяти "Самсунг" будет стоить дороже менее известных аналогов, но ее надежность вызывает гораздо меньше вопросов. Но и здесь сложно говорить о полном отсутствии проблем, а уж от устройств совсем неизвестных производителей сложно ожидать чего-то большего.

    Перспективы развития

    При наличии очевидных достоинств имеется целый ряд недостатков, которыми характеризуется SD-карта памяти, препятствующих дальнейшему расширению ее области применения. Именно поэтому ведутся постоянные поиски альтернативных решений в данной области. Конечно, в первую очередь стараются совершенствовать уже существующие типы флеш-памяти, что не приведет к каким-то принципиальным изменениям в имеющемся процессе производства. Поэтому не стоит сомневаться только в одном: фирмы, занятые изготовлением этих видов накопителей, будут стараться использовать весь свой потенциал, перед тем как перейти на иной тип, продолжая совершенствовать традиционную технологию. К примеру, карта памяти Sony выпускается на данный момент в широком диапазоне объемов, поэтому предполагается, что она и будет продолжать активно распродаваться.

    Однако на сегодняшний день на пороге промышленной реализации находится целый комплекс технологий альтернативного хранения данных, часть из которых можно внедрить сразу же при наступлении благоприятной рыночной ситуации.

    Ferroelectric RAM (FRAM)

    Технология ферроэлектрического принципа хранения информации (Ferroelectric RAM, FRAM) предлагается с целью наращивания потенциала энергонезависимой памяти. Принято считать, что механизм работы имеющихся технологий, заключающийся в перезаписи данных в процессе считываниям при всех видоизменениях базовых компонентов, приводит к определенному сдерживанию скоростного потенциала устройств. А FRAM - это память, характеризующаяся простотой, высокой надежностью и скоростью в эксплуатации. Эти свойства сейчас характерны для DRAM - энергонезависимой оперативной памяти, существующей на данный момент. Но тут добавится еще и возможность длительного хранения данных, которой характеризуется Среди достоинств подобной технологии можно выделить стойкость к разным видам проникающих излучений, что может оказаться востребованным в специальных приборах, которые используются для работы в условиях повышенной радиоактивности либо в исследованиях космоса. Механизм хранения информации здесь реализуется за счет применения сегнетоэлектрического эффекта. Он подразумевает, что материал способен сохранять поляризацию в условиях отсутствия внешнего электрического поля. Каждая ячейка памяти FRAM формируется за счет размещения сверхтонкой пленки из сегнетоэлектрического материала в виде кристаллов между парой плоских металлических электродов, формирующих конденсатор. Данные в этом случае хранятся внутри кристаллической структуры. А это предотвращает эффект утечки заряда, который становится причиной утраты информации. Данные в FRAM-памяти сохраняются даже при отключении напряжения питания.

    Magnetic RAM (MRAM)

    Еще одним типом памяти, который на сегодняшний день считается весьма перспективным, является MRAM. Он характеризуется довольно высокими скоростными показателями и энергонезависимостью. в данном случае служит тонкая магнитная пленка, размещенная на кремниевой подложке. MRAM представляет собой статическую память. Она не нуждается в периодической перезаписи, а информация не будет утрачена при выключении питания. На данный момент большинство специалистов сходится во мнении, что этот тип памяти можно назвать технологией следующего поколения, так как существующий прототип демонстрирует довольно высокие скоростные показатели. Еще одним достоинством подобного решения является невысокая стоимость чипов. Флэш-память изготавливается в соответствии со специализированным КМОП-процессом. А микросхемы MRAM могут производиться по стандартному технологическому процессу. Причем материалами могут послужить те, что используются в обычных магнитных носителях. Производить крупные партии подобных микросхем гораздо дешевле, чем всех остальных. Важное свойство MRAM-памяти состоит в возможности мгновенного включения. А это особенно ценно для мобильных устройств. Ведь в этом типе значение ячейки определяется магнитным зарядом, а не электрическим, как в традиционной флеш-памяти.

    Ovonic Unified Memory (OUM)

    Еще один тип памяти, над которым активно работают многие компании, - это твердотельный накопитель на базе аморфных полупроводников. В его основу заложена технология фазового перехода, которая аналогична принципу записи на обычные диски. Тут фазовое состояние вещества в электрическом поле меняется с кристаллического на аморфное. И это изменение сохраняется и при отсутствии напряжения. От традиционных оптических дисков такие устройства отличаются тем, что нагрев происходит за счет действия электрического тока, а не лазера. Считывание в данном случае осуществляется за счет разницы в отражающей способности вещества в различных состояниях, которая воспринимается датчиком дисковода. Теоретически подобное решение обладает высокой плотностью хранения данных и максимальной надежностью, а также повышенным быстродействием. Высок здесь показатель максимального числа циклов перезаписи, для чего используется компьютер, флешка в этом случае отстает на несколько порядков.

    Chalcogenide RAM (CRAM) и Phase Change Memory (PRAM)

    Эта технология тоже базируется на основе когда в одной фазе вещество, используемое в носителе, выступает в качестве непроводящего аморфного материала, а во второй служит кристаллическим проводником. Переход запоминающей ячейки из одного состояния в другое осуществляется за счет электрических полей и нагрева. Такие чипы характеризуются устойчивостью к ионизирующему излучению.

    Information-Multilayered Imprinted CArd (Info-MICA)

    Работа устройств, построенных на базе такой технологии, осуществляется по принципу тонкопленочной голографии. Информация записывается так: сначала формируется двумерный образ, передаваемый в голограмму по технологии CGH. Считывание данных происходит за счет фиксации луча лазера на краю одного из записываемых слоев, служащих оптическими волноводами. Свет распространяется вдоль оси, которая размещена параллельно плоскости слоя, формируя на выходе изображение, соответствующее информации, записанной ранее. Начальные данные могут быть получены в любой момент благодаря алгоритму обратного кодирования.

    Этот тип памяти выгодно отличается от полупроводниковой за счет того, что обеспечивает высокую плотность записи, малое энергопотребление, а также низкую стоимость носителя, экологическую безопасность и защищенность от несанкционированного использования. Но перезаписи информации такая карта памяти не допускает, поэтому может служить только в качестве долговременного хранилища, замены бумажного носителя либо альтернативы оптическим дискам для распространения мультимедийного контента.

    Возможно, многие обращали внимание при просмотре характеристик своего накопителя, что его емкость недотягивает до указанной производителем. Это касается не только емкости флешек, а всех цифровых носителей: жестких дисков и других в которых емкость измеряется Мегабайтами, Гигабайта и в последних устройствах Терабайтами.

    В чем же здесь дело и не скрывается ли в этом обман? Так сложилось, что производители накопителей, в общем, то как и производители другой продукции хотят продать «конфетку» с красивой надписью (емкость) за меньшие деньги. Что бы победить в конкурентной борьбе. Но емкость которая указана на накопителе правдивая, но с одной стороны.

    Так почему же у флешки емкостью 2 Гб реально только 1,86 Гб, а у 4 Гб только 3,72 Гб.

    Ответ на этот вопрос следует из основ компьютерной техники, а именно: 1 килобайт содержит 1024 байта и так далее с мегабайтами, гигабайтами…

    реальная емкость ( http://www.ixbt.com/storage/flashdrives/svodka/size.shtml) незначительно отличается.

    В итоге сделав простой расчет: 4 000 000 0000/1024/1024/1024 = 3,72; мы получаем цифру 3,72 Гб.

    Для накопителей большей емкости абсолютное отклонение будет больше. Например, для жесткого диска емкость 1 Терабайт реальная емкость составит 931 Гб.

    Кроме того полезная емкость накопителя зависит от выбранной файловой системы: FAT16, FAT32, NTFS. Носитель, отформатированный в разных системах будет иметь разную полезную емкость. Это связано с тем, что при форматировании диска на него записывается системная информация о нем и она, для разных ФС разная.

    Ну и последнее. Есть такой феномен как китайская флешка: это когда в системный раздел флешки небольшой емкости умышленно вносится информация о том, что ее емкость большая. Например, из 1 Гб можно сделать 32 Гб. На практике если эту флешку вставить в компьютер он покажет, что ее емкость 32 Гб. Когда пользователь запишет на нее данные в объеме большем ее реального, копирование завершится без ошибок. Но вот прочитать с такого носителя данные удастся в количестве соизмеримом с реальным объемом т.е. не более 1 Гб для нашего примера.

    Флэш-память относится к классу EEPROM, но использует особую технологию построения запоминающих ячеек. Стирание во флэш-памяти производится сразу для целой области ячеек (блоками или полностью всей микросхемы). Это позволило существенно повысить производительность в режиме записи (программирования). Флэш-память обладает сочетанием высокой плотности упаковки (ее ячейки на 30% меньше ячеек DRAM), энергонезависимого хранения, электрического стирания и записи, низкого потребления, высокой надежности и невысокой стоимости…Это репрограммируемые ЗУ.

    Подобно ОЗУ, флэш-память модифицируется электрически внутрисистемно , но подобно ПЗУ, флэш энергонезависима и хранит данные даже после отключения питания. Однако, в отличие от ОЗУ, флэш нельзя переписывать побайтно . Флэш-память читается и записывается байт за байтом и предъявляет новое требование: ее нужно стереть перед тем, как записывать новые данные .

    Флэш-память — это полупроводниковая память, причем особого типа . Ее элементарная ячейка , в которой хранится один бит информации, представляет собой не конденсатор, а полевой транзистор со специальной электрически изолированной областью, которую называют "плавающим затвором". Электрический заряд, помещенный в эту область, способен сохраняться в течение многих лет. При записи одного бита данных ячейка заряжается — заряд помещается на плавающий затвор, при стирании — заряд снимается с плавающего затвора и ячейка разряжается.

    Выделяют среди таких устройств схемы со специализированными блоками (несимметричные блочные структуры). По имени так называемых Boot блоков в которых информация надежно защищена от случайного стирания, ЗУ называются Boot Block Flash Memory .

    Флэш-память типа Boot Block служит для хранения обновляемых программ и данных в самых разных системах, включая сотовые телефоны, модемы, BIOS, системы управления автомобильными двигателями и многое другое. Используя флэш-память вместо EEPROM для хранения параметрических данных, разработчики добиваются снижения стоимости и повышения надежности своих систем.

    Преимущества флэш-памяти по сравнению с EEPROM:
    1.

    Более высокая скорость записи при последовательном доступе за счёт того, что стирание информации во флэш производится блоками.
    2. Себестоимость производства флэш-памяти ниже за счёт более простой организации.
    Недостаток: Медленная запись в произвольные участки памяти.

    Память с последовательным доступом Используются, где данные могут быть выстроены в очередь.

    Флэш-память с адресным доступом . Хранение редко изменяемых данных. Запись и стирание осу­ществляет процессор выч устр-ва в обычном рабочем режиме. Для этого Флэш-память имеет дополнительное управление словами-командами, записывае­мыми процессором в специальный регистр микросхемы. При подаче специального напряжения программирования схема обеспечивает запись и стирание информации. Перед программировани­ем процессор считывает из микросхемы код — идентификатор, содержащий код фирмы-изготовителя и микросхемы для согласования алгоритмов стирания и записи, автоматически.

    Стираются все байты памя­ти или выбранного блока, после чего все они проверяются, выполняется повторное стирание и проверка.

    Программирование памяти ведется байт за байтом, записанная информация проверяется. Процессор счи­тывает из ЗУ записанный байт и сравнивает его с исходным.

    Один из блоков предназначен для хранения ПО BIOS и аппаратно защищен от случайного стирания.

    Принцип работы и устройство флеш-памяти

    В ЗУ есть также блоки парамет­ров и главные блоки, не защищенные от случайного стирания. Главные блоки хранят основные управляющие программы, а бло­ки параметров — относительно часто меняемые параметры систе­мы.

    Файловая Флэш-память применяется для замены твердых дис­ков. Сокращает потребляемую мощность, повышает надежность ЗУ, уменьшает их размеры и вес, повышает быстродействие при чтении данных. Программа может читаться процессором непосредственно из файловой Флэш-памяти, туда же записываются и результаты.

    На основе файловой Флэш-памяти создаются компактные съемные внешние ЗУ.

    ЗЭ – МНОП.

    2 пороговых напр-ия. Uпор1 – имеет маленькую величину, 1-2 В. При подаче Uпор инициируется канал м/д стоком-истоком. Если м/д нитридом и двуокисью кремния есть заряды, то Uпор увеличилось до 7В.

    Запись (программирование) флеш-памяти – процесс замены 1 на 0. Стирание – замена 0 на 1.

    3.Архитектура РС. Процессоры ЭВМ. Структура процессоров и их основные характеристики. Системные шины и их характеристики. Локальные шины. Чипсеты.
    Архитектура – это многоуровневая иерархия аппаратно-программных средств, каждый из уровней допускает многовариантное построение и применение.

    Структура – это совокупность элементов и их связей.

    ЭВМ – это комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей.

    Архитектура ЭВМ — это общее описание структуры и функций ЭВМ на уровне, достаточном для понимания принципов работы и системы команд ЭВМ, не включающее деталей технического и физического устройства компьютера.

    К архитектуре относятся следующие принципы построения ЭВМ:

    1. структура памяти ЭВМ;
    2. способы доступа к памяти и внешним устройствам;
    3. возможность изменения конфигурации;
    4. система команд;
    5. форматы данных;
    6. организация интерфейса.

    Архитектура современных персональных компьютеров основана на магистрально-модульном принципе . Информационная связь между устройствами компьютера осуществляется через системную шину (другое название — системная магистраль).

    Шина — это кабель, состоящий из множества проводников. По одной группе проводников — шине данных передаётся обрабатываемая информация, по другой — шине адреса — адреса памяти или внешних устройств, к которым обращается процессор. Третья часть магистрали — шина управления , по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др).

    Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шины . Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.
    Системные шины

    Переда­ча информации между МП и осталь­ными элементами. Осуществляется также адресация устройств и обмен специальными служебными сигналами. Передачей информации по шине управляет одно из подключенных к ней устройств или специально выделенный для этого узел, называемый ар­битром шины.

    Шина ISA (Industry Standard Architecture) есть 36-контактный разъем для плат расширения. За счет этого количество адресных линий – 4, а данных – 8. Можно передавать параллельно 16 разрядов данных, а благодаря 24 адресным линиям напрямую обращаться к 16 МБ сист памяти. Кол-во линий аппаратных прерываний — 15.

    Шина EISA (Extended ISA). обеспечивает наи­больший возможный объем адресуемой памяти, 32-разрядную передачу данных, улучшенную систему прерываний, автоматическую конфи­гурацию системы и плат расширения. В EISA-разъем на системной плате компьютера совместим с ISA. Шина EISA позволяет адресовать 4Гб адресного про­ст-ва. Теор максимальная скорость 33 Мбайт/с. Шина тактируется частотой около 8-10 МГц.

    Локальные шины предназначены для увеличения быстродействия компа, позволяя периферийным устройствам (видеоадаптеры, контроллеры накопителей) работать с тактовой частотой до 33 МГц и выще. Используется разъем типа MCA.

    Шины PCI . Между локальной шиной процессора и самой PCI находится специальная согласующая м\схема

    В соответствии со спецификацией PCI к шине могут подклю­чаться до 10 устройств. Шина PCI работает на фиксированной тактовой часто­те 33 МГц и предусматривает напряжение питания для контрол­леров как 5, так и 3,3 В, режим plug and play.

    Шина PCI-X – высокопроизводительная PCI. является синхронной, т.е. все данные обрабатываются одновременно при поступлении управляющего сигнала. Разрядность шины 32-бита. При частоте 33 МГц теоретическая пропускная способность 132 МБ/с.

    Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождаетсяадресом , передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем , где n – разрядность шины.

    схема устройства компьютера, построенного по магистральному принципу

    Чипсет — от англ. "chip set" — набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Так, в компьютерах чипсет выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, ЦПУ, ввода-вывода и других. Чипсеты встречаются и в других устройствах, например, в радиоблоках сотовых телефонов.

    Чипсет материнских плат компьютеров состоит из двух основных микросхем (иногда они объединяются в один чип):

    1. MCH - контроллер-концентратор памяти (Memory Controller Hub) - северный мост (northbridge) - обеспечивает взаимодействие центрального процессора (ЦП) с памятью и видеоадаптером. В новых чипсетах часто имеется интегрированная видеоподсистема.

      Контроллер памяти может быть интегрирован в процессор (например Opteron, Nehalem, UltraSPARC T1).

    2. ICH - контроллер-концентратор ввода-вывода (I/O Controller Hub) - южный мост (southbridge) - обеспечивает взаимодействие между ЦП и жестким диском, картами PCI, интерфейсами IDE, SATA, USB и пр.

    Также иногда к чипсетам относят микросхему Super I/O, которая подключается к южному мосту и отвечает за низкоскоростные порты RS232, LPT, PS/2.

    В настоящее время основными производителями чипсетов для настольных компьютеров являются фирмы Intel, nVidia, AMD (которая приобрела фирму ATI и в настоящее время выпускает чипсеты под своим именем), VIA и SIS .

    Фирма Intel выпускает чипсеты только для собственных процессоров. Для процессоров фирмы AMD наиболее распространенными являются чипсеты nVidia (выпускаемые как правило под торговой маркой nForce ) и AMD.

    Чипсеты фирм VIA и SIS популярны в основном в секторе low end, а также в офисных системах, хотя встроенная графика у них по 3D возможностям значительно уступает nVidia и AMD.

    ⇐ Предыдущая12345678910Следующая ⇒

    Дата публикования: 2015-10-09; Прочитано: 262 | Нарушение авторского права страницы

    Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.004 с)…

    Сравнение производительности различных типов серверных накопителей (HDD, SSD, SATA DOM, eUSB)

    В этой статье мы рассмотрим современные модели серверных накопителей с точки зрения производительности и оптимальных областей применения.

    На данный момент в серверах в основном используются устройства хранения данных двух типов — жесткие магнитные диски (HDD, hard disk drive) и твердотельные накопители (SSD, solid-state drive). Кроме того, используются также и такие устройства, как eUSB Flash Module и SATA DOM. Рассмотрим все эти типы более подробно.

    Современные жесткие магнитные диски могут использовать один из двух интерфейсов — SATA (Serial Advanced Technology Attachment) и SAS (Serial Attached SCSI). Текущая версия интерфейса SATA обеспечивает пропускную способность 6 Гбит/с. Диски с этим интерфейсом преимущественно используются в сегменте настольных персональных компьютеров, но могут применяться и в серверах. В серверном сегменте такие диски имеют скорость вращения шпинделя 7’200 об/мин. В нашем тестировании из дисков этого типа будут принимать участие модели Seagate Constellation.2 ST91000640NS (SATA 7’200, 2.5″) и Seagate Constellation ES ST1000NM0011 (SATA 7’200, 3.5″).

    Более надежный и производительный дисковый SAS-интерфейс предназначен для серверных решений и рабочих станций. Он также имеет пропускную способность до 6 Гбит/с, но уже в режиме полного дуплекса (Full Duplex), что означает возможность одновременной передачи данных в обеих направлениях со скоростью 6 Гбит/c. Диски с этим интерфейсом имеют больший показатель MTBF (Mean Time Between Failures, среднее время наработки на отказ). Более того, интерфейс SAS, в отличие от SATA, использует другой набор команд с поддержкой большей глубины очереди запросов (64 против 32, чем больше глубина очереди, тем лучше оптимизация очередности выполнения запросов) и двухпортовое подключение для возможного обеспечения отказоустойчивости. Важной особенностью SAS является более адаптированное подключение дисков с интерфейсом SAS к различным бэкплэйнам, корзинам, экспандерам, RAID и HBA контроллерам, системам хранения данных и другим устройствам как по внутренним, так и по внешним портам. В настоящее время в серверах применяются SAS-диски со скоростью вращения шпинделя 7’200, 10’000 и 15’000 об/мин.

    Скорость 7’200 об/мин. поначалу была нетипична для серверного сегмента, однако производители жестких дисков в какой-то момент решили выпускать диски со скоростью вращения 7’200 об/мин не только с интерфейсом SATA, но и с интерфейсом SAS. В своей «механической» части эти диски совершенно одинаковы, они отличаются только способом подключения. Этот шаг повысил ценовую доступность SAS-дисков и предоставил серверному сегменту диски SAS большего объема. Основная область применения таких дисков — малобюджетные рабочие станции и сервера начального уровня. Тестируемые диски этого типа — Seagate Constellation.2 ST91000640NS (SAS 7’200, 2.5″) и Seagate Constellation ES.3 ST1000NM0023 (SAS 7’200, 3.5″).

    SAS-диски со скоростью вращения шпинделя 10’000 об/мин — хорошее решение для мощных рабочих станций и недорогих серверных решений корпоративного класса. Тестируемый диск — Seagate Savvio 10K5 ST9900805SS (SAS 10000 2.5″).

    SAS-диски со скоростью вращения шпинделя 15.000 об/мин — лучший выбор для серверов корпоративного сектора, центров обработки данных (ЦОД) и систем хранения данных (СХД). Тестируемый диск — Seagate Cheetah 15K7 ST3300657SS (SAS 15000 3.5″).

    Производительность вышеперечисленных дисков на операциях последовательного и случайного чтения/записи приведена на следующей диаграмме.

    При одинаковых скорости вращения шпинделя и физическом размере пластин диски SAS быстрее дисков SATA, что объясняется большей линейной плотностью данных у дисков SAS по сравнению с дисками SATA.

    С другой стороны, диск SAS 7’200, 3.5” и SAS 10’000, 2.5” показывают практически одинаковые результаты. Это объясняется тем, что преимущество в скорости вращения компенсируется меньшим физическим размером пластин диска 2.5”, в результате чего при одинаковой линейной плотности данных линейная скорость головок относительно пластин примерно одинакова.

    В тесте на случайное чтение, который измеряет количество операций ввода/вывода в секунду (IOPS), результаты дисков 2.5” 7’200 об/мин лучше, чем у дисков форм-фактора 3.5” той же скорости, поскольку у «маленьких» дисков время перемещения головки к нужному сектору меньше. Диски SAS здесь показывают опять более высокий результат по сравнению с дисками SATA, теперь уже за счет лучшей оптимизации очередности выполнения случайных запросов благодаря поддержке большей глубины очереди (64 у SAS против 32 у SATA). Преимущество дисков SAS 10’000 и 15’000 об/мин обеспечивается не только высокой скоростью вращения шпинделя, но и тем, что они имеют более совершенный механизм позиционирования головок с меньшим временем доступа.

    На операциях случайной записи SAS диски имеют такое же преимущество перед дисками SATA, как и на операциях чтения.

    Твердотельные накопители, использующие энергонезависимую память NAND-Flash, обладают в сотни раз большей скоростью чтения и записи на случайных операциях, чем жесткие диски, поскольку в твердотельных накопителях не нужно перемещать магнитную головку. Кроме того, у SSD меньше энергопотребление и отсутствует шум при работе. Но у них есть и недостатки, а именно: высокая стоимость и сравнительно с HDD относительно маленький объем. В сегменте настольных ПК такие накопители используются совместно с HDD по схеме, когда на SSD устанавливаются операционная система и самые необходимые программы, а на HDD хранятся все остальные данные. Такой подход заметно повышает скорость работы компьютера, не сильно увеличивая его стоимость. Для тестирования мы выбрали накопитель Intel 520 Series 240GB. Данный накопитель рекомендован для использования в настольных компьютерах, ноутбуках и рабочих станциях.

    В серверном сегменте ситуация с SSD значительно отличается. Размещать значительные по объему массивы данных на SSD довольно дорого. Зато их с успехом можно использовать для кэширования, когда SSD-кэш используется для размещения «горячих» данных, то есть данных, обращение к которым происходит наиболее часто. Это даёт огромный прирост в производительности дисковой подсистемы сервера, особенно на операциях случайного доступа. Тестируемый серверный SSD-накопитель — Intel DC S3700 100GB.

    При последовательном чтении десктопный и серверный накопители показывают почти одинаковые результаты, а вот при последовательной записи серверный тип SSD заметно проигрывает. Это связано с тем, что в серверном накопителе используется память, которая допускает на порядок большее число циклов перезаписи, однако сами операции записи выполняются медленнее.

    На операциях случайной записи отставание тоже значительно, но это вызвано необходимостью обеспечения гораздо большего ресурса на запись для серверных накопителей.

    Накопители eUSB, как и SSD-накопители, тоже используют для хранения данных Flash-модули, но они устанавливаются непосредственно в USB-разъем на серверной системной плате. Такие накопители имеют ряд функциональных и других ограничений, обусловленных как раз использованием в качестве интерфейса порта USB. C такого накопителя не работает загрузка полноценной версии ОС Windows, а скорость интерфейса (480 Мбит/с) значительно ниже, чем у SATA (6 Гбит/с). Наиболее оптимальной областью их применения в серверах является использование в качестве загрузчика операционной системы небольшого размера, например, гипервизора VMware ESXi.

    В тонких клиентах такие накопители используются для хранения образа операционной системы Windows Embedded. Тестируемый накопитель — eUSB Transcend 4GB.

    Накопители SATA DOM более функциональны, чем eUSB-накопители. Подключаются они так же, как и SSD-накопители, к разъему SATA, но при этом «выглядят» более похожими ни USB-накопитель, нежели на жесткий диск.

    Устройство и принцип работы флеш-накопителя

    Устанавливаются они непосредственно в разъемы SATA на материнской плате компьютера или сервера. Удобно, когда такой разъем имеет встроенное питание, иначе его приходится обеспечивать через дополнительный кабель. Учитывая, что эти накопители подключаются к стандартным SATA разъёмам, BIOS материнской платы работает с ними как с обычными накопителями HDD или SSD, что делает возможным установку на SATA DOM полноценной загрузочной версии операционной системы Windows. В сервере это освобождает место в корзине дисковой подсистемы, позволяя использовать его для диска RAID-массива. К тому же накопитель SATA DOM находится внутри серверной платформы, что исключает случайное изъятие диска с установленной ОС. Применять такие накопители можно в десктопном и серверном сегментах, а также в тонких клиентах, устанавливая любую операционную систему или гипервизор для виртуализации. Тестируемый накопитель — SATA DOM Innodisk 8 GB.

    Результаты тестирования накопителей eUSB-Flash и SATA DOM соответствуют производительности их интерфейсов. По спецификации USB 2.0 регламентирована скорость 25 — 480 Мбит/с, а для SATA 3.0 — 6’000 Мбит/с, что уже склоняет выбор в пользу устройств с интерфейсом SATA. На графике мы видим превосходство в 2,5 раза при операциях последовательного чтении и записи SATA DOM Innodisk над eUSB-Flash.

    В тесте операций случайного чтения ситуация не меняется, SATA DOM также лидирует. Случайная запись у обоих накопителей одинаково на очень низком уровне, но для этих операций они и не предназначены.

    Данные производительности лучших представителей каждого типа накопителей из нашего тестирования приведены на следующих диаграммах. Явным лидером себя показывает твердотельный накопитель от Intel.

    Мы надеемся, что наша статья поможет определиться с выбором того или иного накопителя. А выбрать действительно есть из чего. Очень большое количество разнообразных накопителей предлагается производителями, но для достижения наилучших результатов нужно правильно планировать свои потребности и ожидания от подсистем хранения данных.

    Измерения для HDD и SSD проводились на одном и том же контроллере Intel RS25DB080. Тестирование выполнялось при помощи программы IOmeter со следующими параметрами: кэш-память контроллера и дисков отключена, глубина очереди команд — 256, параметр Strip Size — 256KB, размер блока данных — 256KB для последовательных операций и 4KB для случайных операций. Скорость последовательных операций измерялась в MB/s, случайных — в IOPS (количество операций ввода/вывода в секунду).

    Инженер отдела серверного оборудования Андрей Леонтьев
    03.06.13

    Тайваньская компания Mach Xtreme Technology, специализирующаяся на высокопроизводительных комплектующих для компьютеров и плотно занимающаяся производством твердотельных накопителей, начала розничные продажи перспективного решения для хранения данных, получившего наименование PCIe SSD MX-EXPRESS.

    Флэш-память. Прошлое, настоящее и будущее

    Новинка имеет низкопрофильное исполнение, характеризуется следующими габаритными размерами: 152.5 x 19 x 69 мм, весом — 125 грамм, подключается к компьютеру через слот PCI-Express 2.0 x2, использует пока не названный двойной контроллер и доступна в четырех вариантах исполнения с точки зрения объема: 128 Гб, 256 Гб, 512 Гб и 1 Тб.

    Накопитель имеют поддержку сертификатов ROHS, CE и FCC, для установки в систему не требует каких-либо драйверов. Скорость передачи данных различается, в зависимости от ёмкости дисков. Так, для 512-Гб и 1-Тб решений скорость последовательного чтения составляет 850 Мб/с, а записи — 800 Мб/с, уровень производительности находится в районе 100 000 IOPS, а время доступа — 0.1 мс.

    Диски серии MX-Express имеют огромный срок службы — 2.5 миллиона часов, могут работать при температуре окружающей среды от нуля до 70 градусов по Цельсию, поддерживают TRIM, DuraClass, DuraWrite, RAISE и Garbage Collector. Кроме того в комплекте с новинкой идёт низкопрофильная PCI заглушка.

    128-Гб модель обойдется всем желающим по 309.90 евро, 256-Гб — 379.90 евро, 512-Гб — 669.90 евро и 1 Тб — 1449.90 евро. Гарантия качества производителя на устройства составляет 2 года.